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In this letter, we introduce some mathematical and numerical tools to ana-
lyze and interpret inhomogeneous quadratic forms. The resulting charac-
terization is in some aspects similar to that given by experimental studies
of cortical cells, making it particularly suitable for application to second-
order approximations and theoretical models of physiological receptive
fields. We first discuss two ways of analyzing a quadratic form by visu-
alizing the coefficients of its quadratic and linear term directly and by
considering the eigenvectors of its quadratic term. We then present an al-
gorithm to compute the optimal excitatory and inhibitory stimuli—those
that maximize and minimize the considered quadratic form, respectively,
given a fixed energy constraint. The analysis of the optimal stimuli is
completed by considering their invariances, which are the transforma-
tions to which the quadratic form is most insensitive, and by introducing
a test to determine which of these are statistically significant. Next we
propose a way to measure the relative contribution of the quadratic and
linear term to the total output of the quadratic form. Furthermore, we
derive simpler versions of the above techniques in the special case of a
quadratic form without linear term. In the final part of the letter, we show
that for each quadratic form, it is possible to build an equivalent two-
layer neural network, which is compatible with (but more general than)
related networks used in some recent articles and with the energy model
of complex cells. We show that the neural network is unique only up to
an arbitrary orthogonal transformation of the excitatory and inhibitory
subunits in the first layer.

1 Introduction

Recent research in neuroscience has seen an increasing number of ex-
tensions of established linear techniques to their nonlinear equivalent in
both experimental and theoretical studies. This is the case, for example,
for spatiotemporal receptive field estimates in physiological studies (see
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Simoncelli, Pillow, Paninski, & Schwartz, 2004, for a review) and
information-theoretical models like principal component analysis (PCA)
(Schölkopf, Smola, & Müller, 1998) and independent component analysis
(ICA) (see Jutten & Karhunen, 2003, for a review). Additionally, new non-
linear unsupervised algorithms have been introduced, for example, slow
feature analysis (SFA) (Wiskott & Sejnowski, 2002). The study of the re-
sulting nonlinear functions can be a difficult task because of the lack of
appropriate tools to characterize them qualitatively and quantitatively.

During a recent project concerning the self-organization of complex cell
receptive fields in the primary visual cortex (V1) (Berkes & Wiskott, 2002,
2005b; see section 2), we developed some of these tools to analyze quadratic
functions in a high-dimensional space. Because of the complexity of the
methods, we describe them here in a separate letter. The resulting charac-
terization is in some aspects similar to that given by physiological studies,
making it particularly suitable to be applied to the analysis of nonlinear
receptive fields.

We are going to focus on the analysis of the inhomogeneous quadratic
form

g(x) = 1
2

xT Hx + fT x + c , (1.1)

where x is an N-dimensional input vector, H an N × N matrix, f an N-
dimensional vector, and c a constant. Although some of the mathemati-
cal details of this study are specific to quadratic forms only, it should be
straightforward to extend most of the methods to other nonlinear functions
while preserving the same interpretations. In other contexts, it might be
more useful to approximate the function under consideration by a quadratic
form using a Taylor expansion up to the second order and then apply the
algorithms described here.

In experimental studies, quadratic forms occur naturally as a second-
order approximation of the receptive field of a neuron in a Wiener ex-
pansion (Marmarelis & Marmarelis, 1978; van Steveninck & Bialek, 1988;
Lewis, Henry, & Yamada, 2002; Schwartz, Chichilnisky, & Simoncelli,
2002; Touryan, Lau, & Dan, 2002; Rust, Schwartz, Movshon, &
Simoncelli, 2004; Simoncelli et al., 2004). Quadratic forms were also
used in various theoretical articles, either explicitly (Hashimoto, 2003;
Bartsch & Obermayer, 2003) or implicitly in the form of neural net-
works (Hyvärinen & Hoyer, 2000, 2001; Körding, Kayser, Einhäuser, &
König, 2004). The analysis methods used in these studies are discussed in
section 10.

Table 1 lists some important terms and variables used throughout the
article. We will refer to 1

2 xT Hx as the quadratic term, to fT x as the linear term,
and to c as the constant term of the quadratic form. Without loss of generality,
we assume that H is a symmetric matrix, since if necessary we can substitute
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Table 1: Definitions of Some Important Terms.

N Number of dimensions of the input space
〈·〉t Mean over time of the expression between the two brackets
x Input vector

g, g̃ The considered inhomogeneous quadratic form and its restriction to a
sphere

H, hi N × N matrix of the quadratic term of the inhomogeneous quadratic
form (see equation 1.1) and ith row of H (i.e., H = (h1, . . . , hN)T ). H is
assumed to be symmetric.

vi , µi ith eigenvector and eigenvalue of H, sorted by decreasing eigenvalues
(i.e., µ1 ≥ µ2 ≥ . . . ≥ µN)

V, D The matrix of the eigenvectors V = (v1, . . . , vN) and the diagonal
matrix of the eigenvalues, so that VT HV = D

f N-dimensional vector of the linear term of the inhomogeneous
quadratic form (see equation 1.1)

c Scalar value of the constant term of the inhomogeneous quadratic
form (see equation 1.1)

x+, x− Optimal excitatory and inhibitory stimuli, ‖x+‖ = ‖x−‖ = r

H in equation 1.1 by the symmetric matrix 1
2 (H + HT) without changing the

values of the function g. We define µ1, . . . , µN to be the eigenvalues to the
eigenvectors v1, . . . , vN of H sorted in decreasing order µ1 ≥ µ2 ≥ . . . ≥ µN.
V = (v1, . . . , vN) denotes the matrix of the eigenvectors and D the diagonal
matrix of the corresponding eigenvalues, so that VT HV = D. Furthermore,
〈·〉t indicates the mean over time of the expression included in the angle
brackets.

In the next section we introduce the model system that we use for il-
lustration throughout this letter. Section 3 describes two ways of analyzing
a quadratic form by visualizing the coefficients of its quadratic and linear
term directly and by considering the eigenvectors of its quadratic term.
We then present in section 4 an algorithm to compute the optimal exci-
tatory and inhibitory stimuli—the stimuli that maximize and minimize a
quadratic form, respectively, given a fixed energy constraint. In section 5 we
consider the invariances of the optimal stimuli, which are the transforma-
tions to which the function is most insensitive, and in the following section
we introduce a test to determine which of these are statistically significant.
In section 7 we discuss two ways to determine the relative contribution
of the different terms of a quadratic form to its output. Furthermore, in
section 8 we consider the techniques described above in the special case of
a quadratic form without the linear term. In the end, we present in section
9 a two-layer neural network architecture equivalent to a given quadratic
form. The letter concludes with a discussion of the relation of our approach
to other studies in section 10.



Inhomogeneous Quadratic Forms as Receptive Fields 1871

2 Model System

To illustrate the analysis techniques presented here, we use the quadratic
forms presented in Berkes and Wiskott (2002) in the context of a theoretical
model of self-organization of complex-cell receptive fields in the primary
visual cortex (see also Berkes & Wiskott, 2005b). In this section, we summa-
rize the settings and main results of this example system.

We generated image sequences from a set of natural images by moving
an input window over an image by translation, rotation, and zoom and sub-
sequently rescaling the collected stimuli to a standard size of 16 × 16 pixels.
For efficiency reasons, the dimensionality of the input vectors x was reduced
from 256 to 50 input dimensions and whitened using principal component
analysis (PCA). We then determined quadratic forms (also called functions
or units in the following) by applying SFA to the input data. SFA is an im-
plementation of the temporal slowness principle (see Wiskott & Sejnowski,
2002, and references there). Given a finite-dimensional function space, SFA
extracts the functions that, applied to the input data, return output signals
that vary as slowly as possible in time (as measured by the variance of
the first derivative) under the constraint that the output signals have zero
mean and unit variance and are decorrelated. The functions are sorted by
decreasing slowness. For analysis, the quadratic forms are projected back
from the 50 first principal components to the input space. Note that the rank
of the quadratic term after the transformation is the same as before, and it
thus has only 50 eigenvectors.

The units receive visual stimuli as an input and can be interpreted as non-
linear receptive fields. They were analyzed with the algorithms presented
here and with sine-grating experiments similar to the ones performed in
physiology and were found to reproduce many properties of complex cells
in V1—not only the primary ones, that is, response to edges and phase-shift
invariance (see sections 4 and 5), but also a range of secondary ones such
as direction selectivity, nonorthogonal inhibition, end inhibition, and side
inhibition.

This model system is complex enough to require an extensive analy-
sis and is representative of the application domain considered here, which
includes second-order approximations and theoretical models of physio-
logical receptive fields.

3 Visualization of Coefficients and Eigenvectors

One way to analyze a quadratic form is to look at its coefficients. The
coefficients f1, . . . , fN of the linear term can be visualized and interpreted
directly. They give the shape of the input stimulus that maximizes the linear
part given a fixed norm.

The quadratic term can be interpreted as a sum over the inner product
of the jth row h j of H with the vector of the products xj xi between the jth
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Figure 1: Some of the quadratic form coefficients of two functions learned in the
model system. The top plots show the coefficients of the linear term f, reshaped
to match the two-dimensional shape of the input. The bottom plots show the
coefficients of nine of the rows h j of the quadratic term. The crosses indicate
the spatial position of the corresponding reference index j .

variable xj and all other variables:

xT Hx =
N∑

j=1

xj (hT
j x) =

N∑
j=1

hT
j




xj x1

xj x2
...

xj xN


 . (3.1)

In other words, the response of the quadratic term is formed by the sum
of N linear filters h j which respond to all combinations of the jth variable
with the other ones.

If the input data have a two-dimensional spatial arrangement, as in our
model system, the interpretation of the rows can be made easier by visu-
alizing them as a series of images (by reshaping the vector h j to match
the structure of the input) and arranging them according to the spatial po-
sition of the corresponding variable xj . In Figure 1 we show some of the
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Figure 2: Eigenvectors of the quadratic term of two functions learned in the
model system sorted by decreasing eigenvalues as indicated above each eigen-
vector.

coefficients of two units learned in the model system. In both, the linear term
looks unstructured. The absolute values of its coefficients are small in com-
parison to those of the quadratic term so that its contribution to the output of
the functions is very limited (cf. section 7). The row vectors h j of unit 4 have
a localized distribution of their coefficients; they respond only to combina-
tions of the corresponding variable xj and its neighbors. The filters h j are
shaped like a four-leaf clover and centered on the variable itself. Pairs of op-
posed leaves have positive and negative values, respectively. This suggests
that the unit responds to stimuli oriented in the direction of the two positive
leaves and is inhibited by stimuli with an orthogonal orientation, which is
confirmed by successive analysis (cf. later in this section and section 4).
In unit 28 the appearance of h j depends on the spatial position of x j . In the
bottom half of the receptive field, the interaction of the variables with their
close neighbors along the vertical orientation is weighted positively, with a
negative flank on the sides. In the top half, the rows have similar coefficients
but with reversed polarity. As a consequence, the unit responds strongly to
vertical edges in the bottom half, while vertical edges in the top half result
in strong inhibition. Edges extending over the whole receptive field elicit
only a weak total response. Such a unit is said to be end inhibited.

Another possibility for visualizing the quadratic term is to display
its eigenvectors. The output of the quadratic form to one of the (nor-
malized) eigenvectors equals half of the corresponding eigenvalue, since
1
2 vT

i Hvi = 1
2 vT

i (µi vi ) = 1
2µi . The first eigenvector can be interpreted as the

stimulus that among all input vectors with norm 1 maximizes the output
of the quadratic term. The jth eigenvector maximizes the quadratic term in
the subspace that excludes the previous j − 1 ones. In Figure 2 we show
the eigenvectors of the two functions previously analyzed in Figure 1. In
unit 4, the first eigenvector looks like a Gabor wavelet (i.e., a sine grat-
ing multiplied by a gaussian). The second eigenvector has the same form
except for a 90 degree phase shift of the sine grating. Since the two eigen-
values have almost the same magnitude, the response of the quadratic term
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is similar for the two eigenvectors and also for linear combinations with
constant norm 1. For this reason, the quadratic term of this unit has the
main characteristics of complex cells in V1: a strong response to an ori-
ented grating with an invariance to the phase of the grating. The last two
eigenvectors, which correspond to the stimuli that minimize the quadratic
term, are Gabor wavelets with orientation orthogonal to the first two. This
means that the output of the quadratic term is inhibited by stimuli at an
orientation orthogonal to the preferred one. A similar interpretation can
be given in the case of unit 28, although in this case, the first and the last
two eigenvalues have the same orientation but occupy two different halves
of the receptive field. This confirms that unit 28 is end inhibited. A direct
interpretation of the remaining eigenvectors in the two functions is difficult
(see also section 8), although the magnitude of the eigenvalues shows that
some of them elicit a strong response. Moreover, the interaction of the linear
and quadratic terms to form the overall output of the quadratic form is not
considered but cannot generally be neglected. The methods presented in
the following sections often give a more direct and intuitive description of
quadratic forms.

4 Optimal Stimuli

Another characterization of a nonlinear function can be borrowed from neu-
rophysiological experiments, where it is common practice to characterize a
neuron by the stimulus to which the neuron responds best (for an overview,
see Dayan & Abbott, 2001). Analogously, we can compute the optimal ex-
citatory stimulus of g, the input vector x+ that maximizes g given a fixed
norm ‖x+‖ = r .1 Note that x+ depends qualitatively on the value of r : if
r is very small, the linear term of the equation dominates, so that x+ ≈ f,
while if r is very large, the quadratic part dominates, so that x+ equals the
first eigenvector of H (see also section 8). We usually choose r to be the
mean norm of all input vectors, since we want x+ to be representative of the
typical input. In the same way, we can also compute the optimal inhibitory
stimulus x−, which minimizes the response of the function.

1 The fixed norm constraint corresponds to a fixed energy constraint (Stork &
Levinson, 1982) used in experiments involving the reconstruction of the Wiener
kernel of a neuron (Dayan & Abbott, 2001). During physiological experiments in the
visual system, one sometimes uses stimuli with fixed contrast instead. The optimal stim-
uli under these two constraints may be different. For example, with fixed contrast, one
can extend a sine grating indefinitely in space without changing its intensity, while with
fixed norm, its maximum intensity is going to dim as the extent of the grating increases.
The fixed contrast constraint is more difficult to enforce analytically (e.g., because the
surface of constant contrast is not bounded).
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The problem of finding the optimal excitatory stimulus under the fixed
energy constraint can be mathematically formulated as follows:

maximize g(x) = 1
2 xT Hx + fT x + c

under the constraint xT x = r2 .
(4.1)

This problem is known as the trust region subproblem and has been exten-
sively studied in the context of numerical optimization, where a nonlinear
function is minimized by successively approximating it by an inhomoge-
neous quadratic form, which is in turn minimized in a small neighborhood.
Numerous studies have analyzed its properties in particular in the nu-
merically difficult case where H is near to singular (see Fortin, 2000, and
references there). We make use of some basic results and extend them where
needed.

If the linear term is equal to zero (i.e., f = 0), the problem can be easily
solved (it is simply the first eigenvector scaled to norm r ; see section 8). In
the following, we consider the more general case where f �= 0. We can use a
Lagrange formulation to find the necessary conditions for the extremum:

xT x = r2 (4.2)

and ∇[g(x) − 1
2λxT x] = 0 (4.3)

⇔ Hx + f − λx = 0 (4.4)

⇔ x = (λI − H)−1 f , (4.5)

where we inserted the factor 1
2 for mathematical convenience. According to

theorem 3.1 in Fortin (2000), if an x that satisfies equation 4.5 is a solution to
equation 4.1, then (λI − H) is positive semidefinite (i.e., all eigenvalues are
greater than or equal to 0). This imposes a strong lower bound on the range
of possible values for λ. Note that the matrix (λI − H) has the same eigenvec-
tors vi as H with eigenvalues (λ − µi ). For (λI − H) to be positive semidefi-
nite, all eigenvalues must be nonnegative, and thus λ must be greater than
the largest eigenvalue µ1,

µ1 ≤ λ . (4.6)

An upper bound for lambda can be found by considering an upper
bound for the norm of x. First, we note that matrix (λI − H)−1 is symmetric
and has the same eigenvectors as H with eigenvalues 1/(λ − µi ). We also
know that ‖Av‖ ≤ ‖A‖‖v‖ for every matrix A and vector v. ‖A‖ is here
the spectral norm of A, which for symmetric matrices is simply the largest
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absolute eigenvalue. With this we find an upper bound for λ:

r = ‖x‖ (4.7)

= ‖(λI − H)−1f‖ (4.8)

≤ ‖(λI − H)−1‖ ‖f‖ (4.9)

= max
i

{∣∣∣∣ 1
λ − µi

∣∣∣∣
}

‖f‖ (4.10)

=
(4.6)

1
λ − µ1

‖f‖ (4.11)

⇔ λ ≤ ‖f‖
r

+ µ1 . (4.12)

The optimization problem, equation 4.1, is thus reduced to a search over
λ on the interval [µ1, ( ‖f‖

r + µ1)] until x defined by equation 4.5 fulfills the
constraint ‖x‖ = r (see equation 4.2). Vector x and norm ‖x‖ can be efficiently
computed for each λ using the eigenvalue decomposition of f:

x =
(4.5)

(λI − H)−1f (4.13)

= (λI − H)−1
∑

i

vi (vT
i f) (4.14)

=
∑

i

(λI − H)−1 vi (vT
i f) (4.15)

=
∑

i

1
λ − µi

vi (vT
i f) (4.16)

and

‖x‖2 =
∑

i

(
1

λ − µi

)2

(vT
i f)2 , (4.17)

where the terms vT
i f and (vT

i f)2 are constant for each quadratic form and can
be computed in advance. The last equation also shows that the norm of x is
monotonically decreasing in the considered interval, so that there is exactly
one solution and the search can be efficiently performed by a bisection
method. x− can be found in the same way by maximizing the negative of
g. The pseudocode of an algorithm that implements all the considerations
above can be found in Berkes and Wiskott (2005a). A Matlab version can be
downloaded online from the authors’ home pages (http://itb.biologie.hu-
berlin.de/{˜berkes,˜wiskott}).
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Figure 3: Optimal stimuli of some of the units in the model system. x+ looks
like a Gabor wavelet in almost all cases, in agreement with physiological data.
x− is usually structured and is also similar to a Gabor wavelet, which suggests
that inhibition plays an important role.

If the matrix H is negative definite (i.e., all its eigenvalues are negative)
there is a global maximum that may not lie on the sphere, which might
be used in substitution for x+ if it lies in a region of the input space that
has a high probability of being reached (the criterion is quite arbitrary, but
the region could be chosen to include, for example, 75% of the input data
with highest density). The gradient of the function disappears at the global
extremum such that it can be found by solving a simple linear equation
system:

∇g(x) = Hx + f = 0 (4.18)

⇔ x = −H−1f. (4.19)

In the same way, a positive definite matrix H has a negative global mini-
mum, which might be used in substitution for x−.

In Figure 3 we show the optimal stimuli of some of the units in the model
system. In almost all cases, x+ looks like a Gabor wavelet, in agreement
with physiological data for neurons of the primary visual cortex (Pollen &
Ronner, 1981; Adelson & Bergen, 1985; Jones & Palmer, 1987). The functions
respond best to oriented stimuli having the same frequency as x+. x− is
usually structured as well and looks like a Gabor wavelet too, which sug-
gests that inhibition plays an important role. x+ can be used to compute the
position and size of the receptive fields as well as the preferred orientation
and frequency of the units for successive experiments.

Note that although x+ is the stimulus that elicits the strongest response
in the function, it does not necessarily mean that it is representative of the
class of stimuli that give the most important contribution to its output. This
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depends on the distribution of the input vectors. If x+ lies in a low-density
region of the input space, it is possible that other kinds of stimuli drive the
function more often. In that case, they might be considered more relevant
than x+ to characterize the function. Symptomatic for this effect would be
if the output of a function when applied to its optimal stimulus would
lie far outside the range of normal activity. This means that x+ can be an
atypical, artificial input that pushes the function in an uncommon state. A
similar effect has also been reported in a physiological article comparing
the response of neurons to natural stimuli and to artificial stimuli such as
sine gratings (Baddeley et al., 1997). The characterization of a neuron or
a nonlinear function as a feature detector via the optimal stimulus is thus
at least incomplete (see also MacKay, 1985). However, the optimal stimuli
remain extremely informative in practice.

5 Invariances

Since the considered functions are nonlinear, the optimal stimuli do not
provide a complete description of their properties. We can gain some ad-
ditional insights by studying a neighborhood of x+ and x−. An interesting
question is to which transformations of x+ or x− the function is invariant.
This is similar to the common interpretation of neurons as detectors of a
specific feature of the input that are invariant to a local transformation of
that feature. For example, complex cells in the primary visual cortex are
thought to respond to oriented bars and to be invariant to a local transla-
tion. In this section, we consider the function g̃ defined as g restricted to the
sphere S of radius r , since as in section 4, we want to compare input vectors
having fixed energy. Notice that although g̃ and g take the same values on S
(i.e., g̃(x) = g(x) for each x ∈ S), they are two distinct mathematical objects.
For example, the gradient of g̃ in x+ is zero because x+ is by definition a
maximum of g̃. On the other hand, the gradient of g in the same point is
Hx+ + f, which is in general different from zero.

Strictly speaking, there is no invariance in x+, since it is a maximum,
and the output of g̃ decreases in all directions (except in the special case
where the linear term is zero and the first two or more eigenvalues are
equal). On the other hand, in a general, noncritical point x∗ (i.e., a point
where the gradient does not disappear), the rate of change in any direction
w is given by its inner product with the gradient, ∇ g̃(x∗) · w. For all vectors
orthogonal to the gradient (which span an N − 2 dimensional space), the
rate of change is thus zero. Note that this is not merely a consequence of
the fact that the gradient is a first-order approximation of g̃. By the im-
plicit function theorem (see e.g., Walter, 1995, theorem 4.5), in each open
neighborhood U of a noncritical point x∗, there is an N − 2–dimensional
level surface {x ∈ U ⊂ S | g̃(x) = g̃(x∗)}, since the domain of g̃ (the sphere
S) is an N − 1–dimensional surface and its range (R) is one-dimensional.
Each noncritical point thus belongs to an N − 2 dimensional surface where
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Figure 4: Definition of invariance. This figure shows a contour plot of g̃(x) on
the surface of the sphere S in a neighborhood of x+. Each general point x∗

on S lies on an N − 2–dimensional level surface (as indicated by the closed
lines) where the output of the function g̃ does not change. The only interesting
direction in x∗ is the one of maximal change, as indicated by the gradient ∇ g̃(x∗).
On the space orthogonal to it, the rate of change is zero. In x+ the function has
a maximum, and its output decreases in all directions. There is thus no strict
invariance. Considering the second derivative, however, we can identify the
directions of minimal change. The arrows in x+ indicate the direction of the
invariances (see equation 5.9) with a length proportional to the corresponding
second derivative.

the value of the g̃ stays constant. This is a somewhat surprising result:
for an optimal stimulus, there does not exist any invariance (except in
some degenerate cases); for a general suboptimal stimulus, there exist
many invariances.

This shows that although it might be useful to observe, for example, that
a given function f that maps images to real values is invariant to stimulus
rotation, one should keep in mind that in a generic point, there is a large
number of other transformations to which the function is equally invariant
but would lack an easy interpretation. The strict concept of invariance is thus
not useful for our analysis, since in the extrema we have no invariances at
all, while in a general point, they are the typical case and the only interesting
direction is the one of maximal change, as indicated by the gradient. In the
extremum x+, however, since the output changes in all directions, we can
relax the definition of invariance and look for the transformation to which
the function changes as little as possible, as indicated by the direction with
the smallest absolute value of the second derivative (see Figure 4). (In a
noncritical point, this weak definition of invariance still does not help. If
the quadratic form that represents the second derivative has positive as well
as negative eigenvalues, there is still an N − 3–dimensional surface where
the second derivative is zero.)
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a)

α

b)

Figure 5: Invariances. (a) To compute the second derivative of the quadratic
form on the surface of the sphere, one can study the function along special
paths on the sphere, known as geodetics. Geodetics of a sphere are great circles.
(b) This plot illustrates how the invariances are visualized. Starting from the
optimal stimulus (top), we move on the sphere in the direction of an invariance
until the response of the function drops below 80% of the maximal output or α

reaches 90 degrees. In the figure, two invariances of unit 4 are visualized. The
one on the left represents a phase shift invariance and preserves more than 80%
of the maximal output until 90 degrees (the output at 90 degrees is 99.6% of the
maximum). The one on the right represents an invariance to orientation change
with an output that drops below 80% at 55 degrees.

To study the invariances of the function g in a neighborhood of its op-
timal stimulus respecting the fixed energy constraint, we have defined the
function g̃ as the function g restricted to S. This is particularly relevant here
since we want to analyze the derivatives of the function, that is, its change
under small movements. Any straight movement in space is going to leave
the surface of the sphere. We must therefore be able to define movements
on the sphere itself. This can be done by considering a path ϕ(t) on the
surface of S such that ϕ(0) = x+ and then studying the change of g along
ϕ. By doing this, however, we add the rate of change of the path (i.e., its
acceleration) to that of the function. Of all possible paths, we must take the
ones that have as little acceleration as possible—those that have just the
acceleration that is needed to stay on the surface. Such a path is called a
geodetic. The geodetics of a sphere are great circles, and our paths are thus
defined as

ϕ(t) = cos (t/r ) · x+ + sin (t/r ) · rw (5.1)

for each direction w in the tangential space of S in x+ (i.e., for each w
orthogonal to x+), as shown in Figure 5a. The 1/r factor in the cosine
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and sine arguments normalizes the function such that d
dt ϕ(0) = w with

‖w‖ = 1.
For the first derivative of g̃ along ϕ, we obtain by straightforward calcu-

lations (with (g̃ ◦ ϕ)(t) := g̃(ϕ(t)))

d
dt

(g̃ ◦ ϕ)(t) = d
dt

[
1
2
ϕ(t)T Hϕ(t) + fTϕ(t) + c

]
= . . . (5.2)

= −1
r

sin (t/r ) cos (t/r ) x+T Hx+ + cos (2t/r ) x+T Hw

+ sin (t/r ) cos (t/r ) r wT Hw

−1
r

sin (t/r ) fT x+ + cos (t/r ) fT w , (5.3)

and for the second derivative,

d2

dt2 (g̃ ◦ ϕ)(t) =− 1
r2 cos (2t/r ) x+T Hx+ − 2

r
sin (2t/r ) x+T Hw

+ cos (2t/r ) wT Hw − 1
r2 cos (t/r ) fT x+ − 1

r
sin (t/r ) fT w .

(5.4)

In t = 0 we have

d2

dt2 (g̃ ◦ ϕ)(0) = wT Hw − 1
r2 (x+T Hx+ + fT x+) , (5.5)

that is, the second derivative of g̃ in x+ in the direction of w is composed of
two terms: wT Hw corresponds to the second derivative of g in the direction
of w, while the constant term −1/r2 · (x+T Hx+ + fT x+) depends on the
curvature of the sphere 1/r2 and on the gradient of g in x+ orthogonal to
the surface of the sphere,

∇g(x+) · x+ = (Hx+ + f)T x+ (5.6)

= x+T Hx+ + fT x+. (5.7)

To find the direction in which g̃ decreases as little as possible, we
only need to minimize the absolute value of the second derivative (see
equation 5.5). This is equivalent to maximizing the first term wT Hw in
equation 5.5 since the second derivative in x+ is always negative (because
x+ is a maximum of g̃) and the second term is constant. w is orthogonal to
x+, and thus the maximization must be performed in the space tangential
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to the sphere in x+. This can be done by computing a basis b2, . . . , bN of
the tangential space (e.g., using the Gram-Schmidt orthogonalization on
x+, e1, . . . , eN−1 where ei is the canonical basis of R

N) and replacing the
matrix H by

H̃ = BT HB , (5.8)

where B = (b2, · · · , bN). The direction of the smallest second derivative
corresponds to the eigenvector ṽ1 of H̃ with the largest positive eigenvalue.
The eigenvector must then be projected back from the tangential space into
the original space by a multiplication with B:

w1 = Bṽ1 . (5.9)

The remaining eigenvectors corresponding to eigenvalues of decreasing
value are also interesting, as they point in orthogonal directions where the
function changes with a gradually increasing rate of change.

To visualize the invariances, we move x+ (or x−) along a path on the
sphere in the direction of a vector wi according to

x(α) = cos (α) · x+ + sin (α) · rwi (5.10)

for α ∈ [−90◦, 90◦], as illustrated in Figure 5b. At each point, we measure
the response of the function to the new input vector and stop when it drops
below 80% of the maximal response. In this way, we generate for each
invariance a movie like those shown in Figure 6 for some of the optimal
stimuli (the corresponding animations are available at the authors’ home
pages). Each frame of such a movie contains a nearly optimal stimulus.
Using this analysis, we can systematically scan a neighborhood of the opti-
mal stimuli, starting from the transformations to which the function is most
insensitive up to those that lead to a great change in response. Note that
our definition of invariance applies only locally to a small neighborhood of
x+. The path followed in equation 5.10 goes beyond such a neighborhood
and is appropriate only for visualization. The pseudocode of an algorithm
that computes and visualizes the invariances of the optimal stimuli can be
found in Berkes and Wiskott (2005a). A Matlab version can be downloaded
from the authors’ home pages.

6 Significant Invariances

The procedure described above finds for each optimal stimulus a set of
N − 1 invariances ordered by the degree of invariance (i.e., by increasing
magnitude of the second derivative). We would like to know which of
these are statistically significant. An invariance can be defined as significant
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b) Unit 6, Inv. 3 – Position change

d) Unit 14, Inv. 5 – Frequency change

f) Unit 6, Inv. 5 – Curvature change

100% (0°)99.5% (−90°) 99.6% (90°) 100% (0°)84% (−59°) 84% (59°)

100% (0°)92% (−29°) 92% (29°) 100% (0°)°) 81% (37°)

100% (0°)88% (−44°) 88% (44°) 100% (0°)80% (−42°) 80% (42°)

a) Unit 4, Inv. 1 – Phase shift

c) Unit 13, Inv. 4 – Size change

e) Unit 9, Inv. 3 – Orientation change

81% (−37

Figure 6: Selected invariances for some of the optimal excitatory stimuli shown
in Figure 3. The central patch of each plot represents the optimal stimulus of
a unit, while the ones on the sides are produced by moving it in one (left
patch) or the other (right patch) direction of the eigenvector corresponding to
the invariance. In this image, we stopped before the output dropped below
80% of the maximum to make the interpretation of the invariances easier. The
relative output of the function in percent and the angle of displacement α (see
equation 5.10) are given above the patches. The animations corresponding to
these invariances are available at the authors’ home pages.

if the function changes exceptionally little (less than chance level) in that
direction, which can be measured by the value of the second derivative: the
smaller its absolute value, the slower the function will change.

To test for their significance, we compare the second derivatives of the
invariances of the quadratic form we are considering with those of random
inhomogeneous quadratic forms that are equally adapted to the statistics
of the input data. We therefore constrain the random quadratic forms to
produce an output that has the same variance and mean as the output
of the analyzed ones when applied to the input stimuli. Without loss of
generality, we assume here zero mean and unit variance. These constraints
are compatible with the ones that are usually imposed on the functions
learned by many theoretical models. Because of this normalization, the
distribution of the random quadratic forms depends on the distribution of
the input data.

To understand how to efficiently build random quadratic forms un-
der these constraints, it is useful to think in terms of a dual represen-
tation of the problem. A quadratic form over the input space is equiv-
alent to a linear function over the space of the input expanded to all
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monomials of degree one and two using the function �((x1, . . . , xn)T ) :=
(x1x1, x1x2, x1x3, . . . , xnxn, x1, . . . , xn)T , that is,

1
2

xT




h11 h12 · · · h1n

h12 h22
...

. . .
...

h1n · · · hnn




︸ ︷︷ ︸
H

x +




f1

f2
...
fn




︸ ︷︷ ︸
f

T

x + c =




1
2 h11

h12

h13
...

1
2 hnn

f1
...
fn




︸ ︷︷ ︸
q

T 


x1x1

x1x2

x1x3
...

xnxn

x1
...

xn




︸ ︷︷ ︸
�(x)

+ c . (6.1)

We can whiten the expanded input data �(x) by subtracting its mean 〈�(x)〉t

and transforming it with a whitening matrix S. In this new coordinate sys-
tem, each vector with norm 1 applied to the input data using the scalar
product fulfills the unit variance and zero mean constraints by construc-
tion. We can thus choose a random vector q′ of length 1 in the whitened,
expanded space and derive the corresponding quadratic form in the original
input space:

q′T (S(�(x) − 〈�(x)〉t)) = (ST q′)︸ ︷︷ ︸
=:q

T
(�(x) − 〈�(x)〉t) (6.2)

= qT (�(x) − 〈�(x)〉t) (6.3)

=
(6.1)

1
2

xT Hx + fT x − qT 〈�(x)〉t︸ ︷︷ ︸
:=c

(6.4)

= 1
2

xT Hx + fT x + c , (6.5)

with appropriately defined H and f according to equation 6.1.
We can next compute the optimal stimuli and the second derivative of

the invariances of the obtained random quadratic form. To make sure that
we get independent measurements, we keep only one second derivative
chosen at random for each random function. This operation, repeated over
many quadratic forms, allows us to determine a distribution of the second
derivatives of the invariances and a corresponding confidence interval.

Figure 7a shows the distribution of 50,000 independent second deriva-
tives of the invariances of random quadratic forms and the distribution
of the second derivatives of all invariances of the first 50 units learned in
the model system. The dashed line indicates the 95% confidence interval
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Figure 7: Significant invariances. (a) Distribution of 50,000 independently
drawn second derivatives of the invariances of random quadratic forms and
distribution of the second derivatives of all invariances of the first 50 units
learned in the model system. The dashed line indicates the 95% confidence in-
terval as derived from the random quadratic forms. The distribution in the
model system is more skewed toward small second derivatives and has a
clear peak near zero. Twenty-eight percent of all invariances were classified as
significant. (b) Number of significant invariances for each of the first 50 units
learned in the model system (the functions were sorted by decreasing slowness;
see section 2). The number of significant invariances tends to decrease with
decreasing slowness.

derived from the former distribution. The latter is more skewed toward
small second derivatives and has a clear peak near zero. Twenty-eight per-
cent of all invariances were classified as significant. Figure 7b shows the
number of significant invariances for each individual quadratic form in
the model system. Each function has 49 invariances since the rank of the
quadratic term is 50 (see section 2). The plot shows that the number of
significant invariances decreases with increasing ordinal number (the func-
tions are ordered by slowness, the first ones being the slowest). Forty-six
units out of 50 have three or more significant invariances. The first invari-
ance, which corresponds to a phase shift invariance, was always classified
as significant, which confirms that the units behave like complex cells. Note
that since the eigenvalues of a quadratic form are not independent of each
other, with the method presented here it is possible to make statements
only about the significance of individual invariances, and not about the
joint probability distribution of two or more invariances.

7 Relative Contribution of the Quadratic, Linear, and Constant Term

The inhomogeneous quadratic form has a quadratic, a linear, and a constant
term. It is sometimes of interest to know what their relative contribution
to the output is. The answer to this question depends on the considered
input. For example, the quadratic term dominates for large input vectors,
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Figure 8: Relative contribution of the quadratic, linear, and constant term.
(a) The absolute value of the output of the quadratic, linear, and constant term
in x+ for each of the first 50 units in the model system. In all but the first 2 units,
the quadratic term has a larger output. The subplot shows a magnified version
of the contribution of the terms for the first 10 units. (b) Histogram of the mean
of the logarithm of the ratio between the activity of the linear and the quadratic
term in the model system when applied to 90,000 test input vectors. A negative
value means that the quadratic term dominates, and a positive value means the
linear term dominates. In all but 4 units (units 1, 7, 8, and 24), the quadratic
term is greater on average.

while the linear or even the constant term dominates for input vectors with
a small norm.

A first possibility is to look at the contribution of the individual terms at
a particular point. A privileged point is, for example, the optimal excitatory
stimulus, especially if the quadratic form can be interpreted as a feature
detector (cf. section 4). Figure 8a shows for each function in the model
system the absolute value of the output of all terms with x+ as an input.
In all functions except the first two, the activity of the quadratic term is
greater than that of the linear and of the constant term. The first function
basically computes the mean pixel intensity, which explains the dominance
of the linear term. The second function is dominated by a constant term
from which a quadratic expression very similar to the squared mean pixel
intensity is subtracted.

As an alternative we can consider the ratio between linear and quadratic
term, averaged over all input stimuli:

〈
log

∣∣∣∣∣ fT x
1
2 xT Hx

∣∣∣∣∣
〉

t

=
〈
log

∣∣fT x
∣∣ − log

∣∣∣∣1
2

xT Hx
∣∣∣∣
〉

t
. (7.1)

The logarithm ensures that a given ratio (e.g., linear/quadratic = 3) has the
same weight as the inverse ratio (e.g., linear/quadratic = 1/3) in the mean.
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A negative result means that the quadratic term dominates, while for a
positive value, the linear term dominates. Figure 8b shows the histogram of
this measure for the functions in the model syatem. In all but 4 units (units
1, 7, 8, and 24), the quadratic term is on average greater than the linear one.

8 Quadratic Forms Without the Linear Term

In the case of a quadratic form without the linear term,

g(x) = 1
2

xT Hx + c, (8.1)

the mathematics of sections 4 and 5 becomes much simpler. The quadratic
form is now centered at x = 0, and the direction of maximal increase cor-
responds to the eigenvector v1 with the largest positive eigenvalue. The
optimal excitatory stimulus x+ with norm r is thus

x+ = rv1 . (8.2)

Similarly, the eigenvector corresponding to the largest negative eigenvalue
vN points in the direction of x−.

The second derivative, equation 5.5, in x+ in this case becomes

d2

dt2 (g̃ ◦ ϕ)(0) = wT Hw − 1
r2 x+T Hx+ (8.3)

=
(8.2)

wT Hw − vT
1 Hv1 (8.4)

= wT Hw − µ1. (8.5)

The vector w is by construction orthogonal to x+ and therefore lies in the
space spanned by the remaining eigenvectors v2, . . . , vN. Since µ1 is the
maximum value that wT Hw can assume for vectors of length 1, it is clear
that equation 8.5 is always negative (as it should since x+ is a maximum)
and that its absolute value is successively minimized by the eigenvectors
v2, . . . , vN in this order. The value of the second derivative on the sphere in
the direction of vi is given by

d2

dt2 (g̃ ◦ ϕ)(0) = vT
i Hvi − µ1 (8.6)

= µi − µ1 . (8.7)

In the same way, the invariances of x− are given by vN−1, . . . , v1 with second
derivative values (µi − µN).
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Since, as shown in Figure 8a, in the model system the linear term is mostly
small in comparison with the quadratic one, the first and last eigenvectors of
our units are expected to be very similar to their optimal stimuli. This can be
verified by comparing Figures 2 and 3. Moreover, successive eigenvectors
are almost equal to the directions of the most relevant invariances (compare,
for example, unit 4 in Figure 2 and Figure 5b). This does not have to be the
case in general. For example, the data in Lewis et al. (2002) show that
cochlear neurons in the gerbil ear have a linear as well as a quadratic
component. In such a situation, the algorithms must be applied in their
general formulation.

9 Decomposition of a Quadratic Form in a Neural Network

As also noticed by Hashimoto (2003), for each quadratic form there exists
an equivalent two-layer neural network, which can be derived by rewriting
the quadratic form using its eigenvector decomposition:

g(x) = 1
2

xT Hx + fT x + c (9.1)

= 1
2

xT VDVT x + fT x + c (9.2)

= 1
2

(VT x)T D(VT x) + fT x + c (9.3)

=
N∑

i=1

µi

2
(vT

i x)2 + fT x + c . (9.4)

The network has a first layer formed by a set of N linear subunits sk(x) = vT
k x

followed by a quadratic nonlinearity weighted by the coefficients µk/2.
The output neuron sums the contribution of all subunits plus the output
of a direct linear connection from the input layer (see Figure 9a). Since
the eigenvalues can be negative, some of the subunits give an inhibitory
contribution to the output. It is interesting to note that in an algorithm that
learns quadratic forms, the number of inhibitory subunits in the equivalent
neural network is not fixed but is a learned feature. As an alternative, one
can scale the weights vi by

√|µi |/2 and specify which subunits are excitatory
and which are inhibitory according to the sign of µi , since

g(x) =
(9.4)

N∑
i=1

µi

2
(vT

i x)2 + fT x + c (9.5)

=
N∑

i=1
µi >0


(√

|µi |
2

vi

)T

x


2

−
N∑

i=1
µi <0


(√

|µi |
2

vi

)T

x


2

+ fT x + c . (9.6)
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...

c)b)

......

a)

Figure 9: Neural networks related to inhomogeneous quadratic forms. In all
plots we assume that the norm of the subunits is 1 (i.e., ‖vi‖ = 1). The ellipse in
the input layer represents a multidimensional input. (a) Neural network equiv-
alent to an inhomogeneous quadratic form. The first layer consists of N linear
subunits, followed by a quadratic nonlinearity weighted by the coefficients µi/2.
The output neuron sums the contribution of each subunit plus the output of a
direct linear connection from the input layer. (b) Simpler neural network used
in some theoretical studies. The output of the linear subunits is squared but not
weighted and can give only an excitatory (positive) contribution to the output.
There is no direct linear connection between input and output layer. (c) The
energy model of complex cells consists of two linear subunits whose weights
are Gabor filters having the same shape except for a 90 degree phase difference.
The output is given by the square sum of the response of the two subunits.

This equation also shows that the subunits are unique only up to an orthog-
onal transformation (i.e., a rotation or reflection) of the excitatory subunits
and another one of the inhibitory subunits, which can be seen as follows.
Let A+ and A− be the matrices having as rows the vectors

√|µi |/2 vi

for positive and negative µi , respectively. Equation 9.6 can then be
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1.46 −1.131.40 −1.131.22 −1.121.22 −1.101.20 −1.02

1.54 −1.221.38 −1.211.28 −1.161.23 −1.131.20 −1.06

Unit 4

......

......

Figure 10: Random rotations of the positive and negative subunits. Two ex-
amples of the weights of the subunits of unit 4 after a random rotation as in
equation 4.8. The numbers above the patches are the weighting coefficients on
the second layer when the weight vectors of the first layer are normalized to
norm 1. The subunits before rotation are equal to the eigenvectors of unit 4, and
their weighting coefficients are equal to half the eigenvalues (see Figure 2, top).

rewritten as

g(x) = ‖A+x‖2 − ‖A−x‖2 + fT x + c . (9.7)

Since the length of a vector does not change under rotation or reflection, the
output of the function remains unchanged if we introduce two orthogonal
transformations R+ and R−:

g(x) = ‖R+A+x‖2 − ‖R−A−x‖2 + fT x + c . (9.8)

Figure 10 shows the weights of the subunits of the neural network equiva-
lent to unit 4 as defined by the eigenvectors of H (see equation 9.4) after a
random rotation of the excitatory and inhibitory subunits. The subunits are
not as structured as in the case of the eigenvectors (cf. Figure 2), although
the orientation and frequency can still be identified.

The neural model suggests alternative ways to learn quadratic forms, for
example, by adapting the weights by backpropagation. The high number
of parameters involved, however, could make it difficult for an incremental
optimization method to avoid local extrema. On the other hand, each net-
work of this form can be transformed into a quadratic form and analyzed
with the techniques described in this article, which might be useful, for
example, to compute the optimal stimuli and the invariances.

The equivalent neural network shows that quadratic forms are compati-
ble with the hierarchical model of the visual cortex first proposed by Hubel
and Wiesel (1962), in which complex cells pool over simple cells having sim-
ilar orientation and frequency in order to achieve phase-shift invariance.
This was later formalized in the energy model of complex cells (Adelson
& Bergen, 1985), which can be implemented by the neural network intro-
duced above. The subunits are interpreted as simple cells and the output
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unit as a complex cell. In its usual description, the energy model consists of
only two excitatory subunits. If, for example, the subunits are two Gabor
wavelets with identical envelope function, frequency, and orientation but
with a 90 degree phase difference (see Figure 9c), the network will repro-
duce the basic properties of complex cells: edge detection and phase-shift
invariance. Additional excitatory or inhibitory subunits might introduce
additional complex cell invariances, broaden or sharpen the orientation
and frequency tuning, and provide end or side inhibition. However, as
mentioned in the previous section, the neural network is not unique, so
that the subunits can assume different forms, many of which might not be
similar to simple cells (see Figure 10). For example, as discussed in sec-
tion 8, if the linear term is missing and the subunits are defined using the
eigenvectors of H as in equation 9.4, the linear filters of the subunits can be
interpreted as the optimal stimuli and the invariances thereof. As shown in
Figure 2, the invariances themselves need not be structured like a simple
cell, since they only represent transformations of the optimal stimuli.

10 Relation to Other Studies

As mentioned in section 1, quadratic forms occur in experimental studies
as a second-order approximation of the receptive field of neurons. The
linear and quadratic terms correspond in this case to the first two terms
in a Wiener expansion. They can be estimated from a stimulus-response
electrophysiological recording using the spike-triggered average (STA) and
the spike-triggered covariance matrix (STC) (van Steveninck & Bialek, 1988;
Lewis et al., 2002; Schwartz et al., 2002; Touryan et al., 2002; Rust et al., 2004;
Simoncelli et al., 2004).

Most of these studies perform an analysis of the first principal compo-
nents of the STC, which is motivated in terms of identifying the stimuli that
contribute most to the variance of the output of the neuron (Lewis et al.,
2002; Schwartz et al., 2002; Rust et al., 2004; Simoncelli et al., 2004) or
more in terms of a gaussian approximation of the spike-triggered ensemble
(van Steveninck and Bialek, 1988; Touryan et al., 2002). The extracted prin-
cipal components span the subspace of stimuli that governs the response
of a cell (Rust et al., 2004). If the linear term is negligible, our analysis is
mostly consistent with this interpretation: ordering the eigenvectors by de-
creasing eigenvalues, the first one corresponds to the optimal stimulus and
the following ones to the most relevant invariances (see section 8). Every
stimulus that is generated by a linear combination of the optimal stimulus
and the most relevant invariances is going to produce a strong output in the
quadratic form. However, using the concept of invariances, we can refine
the analysis and identify a hypercone in this subspace where the output is
more than 80% of the maximal one with a large extension in the most in-
variant directions and a small one in the least invariant ones (see section 5).
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Figure 11: Interpretation of the invariances. This figure illustrates that although
the vector corresponding to an invariance (center) might be difficult to interpret
or even look unstructured, when applied to the optimal excitatory stimulus
(left) it can code for a meaningful invariance (right). The invariance shown here
is the curvature invariance of Figure 6f.

The stimuli lying in this hypercone are all nearly optimal stimuli, and their
visualization can give good insight in the overall behavior of the neuron.

In our approach, the quadratic forms are interpreted as second-order ap-
proximations of the input-output functions computed by the neurons, and
the resulting characterization is similar to the one given by classical phys-
iological experiments (e.g., De Valois, Albrecht, & Thorell, 1982; De Valois,
Yund, & Hepler, 1982; Schiller, Finlay, & Volman, 1976a, 1976b). Because of
this interpretation, the linear term cannot be neglected or eliminated as in
the experimental studies cited above. Only if the linear term is proved to
be reasonably close to zero can one consider the quadratic term alone and
apply the methods described in section 8.

Two recent theoretical studies (Hashimoto, 2003; Bartsch & Obermayer,
2003) learned quadratic forms without the linear term from natural images.
The eigenvectors of H were visualized and interpreted as “relevant fea-
tures.” Some of them were discarded because they were “unstructured.”
According to our analysis, this interpretation holds for only the two eigen-
vectors with the largest positive and negative eigenvalues. We think that
the remaining eigenvectors should not be visualized directly but applied as
transformations to the optimal stimuli. Therefore, it is possible for them to
look unstructured but still represent a structured invariance, as illustrated
in Figure 11. For example, Hashimoto (2003, Fig. 5a) shows the eigenvectors
of a quadratic form learned by a variant of SFA performed by gradient de-
scent. The two largest eigenvectors look like two Gabor wavelets and have
the same orientation and frequency. According to the interpretation above
and to Hashimoto, this shows that the network responds best to an oriented
stimulus and is invariant to a phase shift. The third eigenvector looks like
a Gabor wavelet with the same frequency as the first two but a slightly
different orientation. Hashimoto suggests that this eigenvector makes the
interpretation of that particular quadratic form difficult. According to our
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analysis, that vector might code for a rotation invariance, which would be
compatible with a complex cell behavior.

Neural networks closely related to those presented in section 9 were used
in some theoretical studies (Hyvärinen & Hoyer, 2000, 2001; Körding et al.,
2004). There, a small set of linear subunits (2 to 25) was connected to an
output unit that took the sum of the squared activities (see Figure 9b). These
networks differ from inhomogeneous quadratic forms in that they lack a
direct linear contribution to the output and have much fewer subunits
(a quadratic form of dimension N has N subunits). The most important
difference, however, is related to the normalization of the weights. In the
theoretical studies cited above, the weights are normalized to a fixed norm,
and the activity of the subunits is not weighted. In particular, since there are
no negative coefficients, no inhibition is possible, whereas this turned out
to be essential for a number of complex cell properties in our simulations.
However, the results of section 9 show that it is possible to use the algorithms
presented here to analyze and interpret the weights of this kind of neural
network.

11 Conclusion

We have presented a collection of tools to analyze nonlinear functions,
in particular quadratic forms. These tools allow us to visualize the coef-
ficients of the individual terms of an inhomogeneous quadratic form, to
compute its optimal stimuli (i.e., the stimuli that maximize or minimize the
quadratic form under a fixed energy constraint) and their invariances (i.e.,
the transformations of the optimal stimuli to which the quadratic form is
most insensitive), and to determine which of these invariances are statis-
tically significant. We have also proposed a way to measure the relative
contribution of the linear and quadratic term. Moreover, we have discussed
a neural network architecture equivalent to a given quadratic form. The
methods presented here can be used in a variety of fields, in particular in
physiological experiments to study the nonlinear receptive fields of neurons
and in theoretical studies.
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