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Abstract

Recently we presented a model of additive neurogenesis in a linear, feedfor-

ward neural network that performed an encoding-decoding memory task in

a changing input environment. Growing the neural network over time al-

lowed the network to adapt to changes in input statistics without disrupting

retrieval properties, and we proposed that adult neurogenesis might fulfil a

similar computational role in the dentate gyrus of the hippocampus. Here

we explicitly evaluate this hypothesis by examining additive neurogenesis

in a simplified hippocampal memory model. The model incorporates a di-

vergence in unit number from the entorhinal cortex to the dentate gyrus

and sparse coding in the dentate gyrus, both notable features of hippocam-

pal processing. We evaluate two distinct adaptation strategies; neuronal

turnover, where the network is of fixed size but units may be deleted and

new ones added, and additive neurogenesis, where the network grows over

time, and quantify the performance of the network across the full range of

adaptation levels from zero in a fixed network to one in a fully adapting

network. We find that additive neurogenesis is always superior to neu-

ronal turnover as it permits the network to be responsive to changes in input

statistics while at the same time preserving representations of earlier envi-

ronments.

1 Introduction

The production, maturation and integration of new neurons into existing

circuits is known to occur in a variety of species and brain areas, including

the HVC of song birds (Nottebohm, 1981; Alvarez-Buylla and Kirn, 1997;

Nottebohm, 2002), the primate hippocampus (Gould et al., 2001), and the

medial cortex of lizards (Font et al., 2001; Marchioro et al., 2005). In rats par-

ticularly high levels of neurogenesis can be found in the olfactory bulb and

the dentate gyrus of the hippocampus (Altman and Das, 1965; Kornack and

Rakic, 2001; Ming and Song, 2005), although some studies suggest that the

birth of new neurons also occurs in other areas (Chechneva et al., 2005; Take-

mura, 2005). In neonatal rats it is estimated that around 10, 000 new neurons

are born in the subgranular layer of the dentate gyrus each day, a number

that declines rapidly with age (McDonald and Wojtowicz, 2005). New neu-
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rons have been shown to integrate with existing circuits and acquire mature

firing characteristics within a few weeks (Markakis and Gage, 1999; Paton

and Nottebohm, 1984). Although the majority of these new neurons sub-

sequently die, those that do survive can persist for a year or more (Bayer

et al., 1982; Boss et al., 1985). Surviving neurons appear to be initially more

excitable and plastic than the existing mature neurons, abilities which may

facilitate their integration into the existing network (Snyder et al., 2001; van

Praag et al., 2002; Schmidt-Hieber et al., 2004). Adult neurogenesis is regu-

lated in a number of ways, with voluntary exercise (van Praag et al., 1999),

access to enriched environments (Brown et al., 2003), and age (McDonald

and Wojtowicz, 2005) all having been shown to affect levels of neurogenesis

in rats and mice (for review, see Lehmann, Butz, and Teuchert-Noodt, 2005

and Ming and Song, 2005). Regulation of neurogenesis can take place either

at the proliferation or apoptosis stage, two processes that appear to be at

least partially distinct and that can be regulated independently (Cameron

et al., 1995; Kempermann et al., 1997; Petreanu and Alvarez-Buylla, 2002).

Given the apparent concentration of neurogenesis in particular brain re-

gions and the variety of ways in which it can be regulated, it is natural to

speculate as to whether the ability to grow a neural network over time lends

some specific functional advantage compared to a static network of a fixed

size. A number of explanations of neurogenesis have been put forward in

the literature. Many theoretical studies focus on the role of neurogenesis

in learning and the computational advantages of neurogenesis have been

illustrated in a variety of networks and learning tasks (Gould et al., 1999;

Cecchi et al., 2001; Chambers et al., 2004; Becker, 2005; Crick and Miranker,

2005; Aimone et al., 2006; Chambers and Conroy, 2007). Typically neuroge-

nesis is implemented as part of a replacement process for units which die

and are subsequently removed from the network, so that the neurogenesis

actually takes place as part of a neuronal turnover mechanism. For exam-

ple, Cecchi et al. (2001) present a model of olfactory bulb neurogenesis in

which inhibitory granule cells are randomly deleted and replaced by cells

with newly initialised, random connectivity. Survival of these new units is

determined in an activity dependent manner. This kind of network is ca-

pable of developing odour selectivity and can also adapt to changes in the

input patterns as the turnover permits a rewiring of the neuronal connec-

tions over time. Chambers et al. (2004) examine neuronal turnover in a very
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similar three layer feed forward network but with plastic connections. A su-

pervised learning rule is used to train the network on two different data sets

which are presented sequentially. Introducing a random turnover of mid-

dle layer units speeds up learning of the input-output relations of the new

data set by helping the network forget the old input-output relations of the

original data set, an effect that could be accelerated if turnover was targeted

to units that stored the most information. A similar result was obtained by

Crick and Miranker (2005) using an unsupervised learning rule.

Neuronal turnover has also been examined in the context of hippocam-

pal processing. In Becker (2005) an explicit hippocampal memory model

is formulated in which entorhinal cortex input patterns are encoded by the

dentate gyrus and then stored in CA3. In this model the dentate gyrus is

responsible for generating distinct codes for each of the input patterns re-

ceived from the entorhinal cortex. This reduces the overlap between very

similar input patterns, an effect which can otherwise cause problems dur-

ing the storage and recall stages. Randomised turnover in the dentate gyrus

layer was shown to offer advantages over static networks by allowing more

distinctive codes to be generated when encoding memory patterns of very

similar events.

Although these studies have provided useful insights into the compu-

tational properties of neurogenesis when neurogenesis is part of either a

general or targeted turnover of units (which appears to be the dominant

process in the olfactory bulb) experimental work suggest that neurogenesis

in the hippocampus is additive, with new neurons being added to an ex-

panding network rather than being used as replacements for dead or dying

cells. In rats, for example, it has been estimated that neurogenesis leads to

a growth of around 30% of the dentate gyrus over the lifetime of the animal

(Bayer et al., 1982; Boss et al., 1985). The interpretation of why neurogenesis

in the hippocampus is additive and not a turnover depends on the function

ascribed to the network. The precise role of the hippocampus is still a mat-

ter of some debate, but a variety of experimental results have indicated that

the hippocampus is involved in some form of memory function. In humans,

hippocampal damage leads to anterograde amnesia and graded amnesia of

episodic memories while leaving procedural memory unimpaired (Scoville

and Milner, 1957), while in rats, damage to the hippocampus adversely af-

fects navigation in the Morris water maze (Czurkó et al., 1997), a task likely
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to involve at least some form of episodic memory. Several models of the

hippocampus as a memory system have been put forward inspired by these

results (See, for example, Treves and Rolls, 1994; McClelland et al., 1995;

and Hasselmo and Wyble 1997). These models differ in a number of im-

portant ways, for example in architecture (Lisman, 1999), permanence of

storage (Nadel et al., 2000), or the storage and retrieval mechanisms (Kunec

et al., 2005), but are typically built around the same basic principle that the

hippocampus acts as a memory store.

In a previous study Wiskott, Rasch, and Kempermann (2006) examined

the effect of additive neurogenesis in a simple, linear, feed forward neural

network that performed an encoding-decoding memory task. In this model,

the middle layer of the network was required to form a compact code rep-

resentation of the input patterns for subsequent storage. The patterns were

later retrieved and decoded to reproduce an approximation to the original

input pattern. The dual constraints that the statistics describing the incom-

ing patterns depended on the current environment, and that the system was

required to deal with changes in this environment, led to a form of inter-

ference where adapting to the new input statistics severely disrupted the

retrieval of previously stored memory patterns. Their key finding was that,

unlike conventional forms of adaptation where network connections change

over time, additive neurogenesis allowed the network to adapt to new envi-

ronments while at the same time avoiding a breakdown of retrieval proper-

ties. Note that this form of interference is a decoding issue that arises when

changes in network connectivity disrupt the correct interpretation of activ-

ity patterns, and is distinct to the forms of interference considered in other

models of hippocampal neurogenesis, such as Becker (2005) where the net-

work has difficulty distinguishing between very similar input patterns, and

to interference in a Hopfield network when too many patterns have been

stored and the network is no longer able to recall any of the stored patterns.

It was proposed that the process of adult neurogenesis might fulfil a very

similar computational role in the dentate gyrus of the hippocampus, endow-

ing it with the ability to adapt to new input statistics while at the same time

preserving representations of earlier environments. However, in this previ-

ous study the network was linear and the middle layer had fewer units than

the input layer, so that representations of input patterns in the middle layer

took the form of a compact code. In the hippocampus there is a large di-
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vergence in unit number between the input (entorhinal cortex) and middle

(dentate gyrus) layers. The representation in the middle layer is also very

sparse, with average activity levels as low as 0.5% (Barnes et al., 1990; Jung

and McNaughton, 1993). The resulting encoding is therefore highly non-

linear, and the computation performed by such a network very different to

the simple, linear case we examined previously. Furthermore, only a single,

fixed level of neurogenesis was examined in this earlier study leaving open

the question of whether neurogenesis is always a superior adaptation strat-

egy compared to more conventional strategies, or if regimes exist where the

network performance is actually worse.

Here we explicitly evaluate the hypothesis that neurogenesis might play

a role in avoiding interference in the dentate gyrus by examining addi-

tive neurogenesis in a simplified memory model of the hippocampus. The

model incorporates both a dimensionality increase from the entorhinal cor-

tex to the dentate gyrus and sparse coding, both notable features of hip-

pocampal processing. The system is required to first encode and store, then

later retrieve and decode, input patterns in a changing input environment.

We consider two distinct ways in which the network can adapt; in neuronal

turnover the network is of fixed size but units can be deleted and replaced,

while in additive neurogenesis the network starts out smaller in size and

grows over time. We derive analytical expressions and perform accompa-

nying simulations to quantify the severity of decoding interference in this

model and evaluate the performance of this network under different adap-

tation strategies at biologically realistic levels of adaptation. Having done

this we extend our simulations and compare network performance across

the full range of neurogenesis and turnover levels.

2 Model

To examine the functional implications of additive neurogenesis in as wide a

sense as possible we do not consider any one particular hippocampal model

but explore neurogenesis in the context of a generalised, encoding and de-

coding memory model. Although it is possible that the hippocampus also

plays a role in spatial processing, it is known that spatially structured activ-

ity exists outside of the hippocampus (Hafting et al., 2005) so it is unclear

to what extent the hippocampus actually performs spatial computation as
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Figure 1: (Left panel) our simplified hippocampal model. We focus on the

role of the EC and DG, while the remaining areas are modelled only im-

plicitly and are shown as grey in the figure. Connectivity which does not

play a role in our model is indicated by grey arrows. (Right panel) the au-

toencoding network we abstract from our simplified hippocampal model.

A continuous N-dimensional EC input pattern, denoted x, is encoded into a

binaryM-dimensional DG representation, denoted x
′. This pattern is stored

and retrieved at some later time, then inverted to reproduce an approxima-

tion to the original pattern, x′′. We do not consider the details of storage

and retrieval, and instead focus on the interaction between the EC and DG.

In particular, we consider how the DG encoding can adapt to accommodate

changes in the EC input statistics.

opposed to simply operating on spatially structured input from the EC. In

such circumstances we have chosen to make the hypothesis that the primary

function of the hippocampus is to act as a memory system where some use-

ful information is stored and later retrieved. Incoming patterns from the

neocortex arrive at the superficial layers of the entorhinal cortex (EC), which

act as a gateway to the hippocampus. Input patterns are encoded by the

dentate gyrus (DG) then stored downstream in the hippocampus proper,

presumably in area CA3. Stored patterns are retrieved at some later time

and decoded to reproduce the original input pattern in the output layers of

the EC. We do not consider the details of how the hippocampus performs

the storage and retrieval, nor the nature of the stored information. The

stored patterns may be genuine memories or pointers to memories stored

elsewhere, and storage can either be permanent or for a limited time, af-

ter which memories are transferred to another storage site via a process of

consolidation. This simplified hippocampal memory model is illustrated in

Figure 1.
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It takes the form of a three-layer autoencoder network with N units in

the input layer representing the superficial layers II/III of the EC, M units

in the middle or hidden layer representing the DG, andN units again in the

output layer representing the deep layers V/VI of the EC. The input and

output layers have continuous units that can assume positive and negative

real values while the hidden layer has binary units that can only assume the

values 0 and 1. This reflects the fact that cells in the EC have a fairly contin-

uous firing rate distribution while the granule cells of the DG show a more

binary, bursting behaviour typified by place cells (O’Keefe and Dostrovsky,

1971). Because of the extreme sparseness of around 0.5% activity in the DG

(Barnes et al., 1990; Jung andMcNaughton, 1993) we use a one-out-of-M rep-

resentation in the hidden layer, so that exactly one unit is active and set to

1 and all others are inactive and set to 0. Input and output EC-activities are

thereforeN-dimensional vectors with real coefficients and the DG-activity is

an M-dimensional binary vector, with M ≫ N . This produces a reasonable

level of sparseness for the network sizes we consider, and has the added

advantage of permitting some degree of analysis of the network. The repre-

sentational restriction in the hidden layer is compensated to some extent by

the fact that the hidden (DG) layer has many more units than the other two

layers (Boss et al., 1985; Mulders et al., 1997).

Each unit i in the hidden layer has an associatedN-dimensional encoding

vector x̂i. An input vector x activates the unit i∗ in the hidden layer with

associated encoding vector x̂i lying closest to the input vector x. Thus, for

any given input vector x the winning unit is

i∗ := argmin
i

|x− x̂i| . (1)

This activation rule induces a Voronoi tessellation of the input space intoM

Voronoi cells, with each cell containing one encoding vector, as illustrated

in Figure 2.

Each unit in the hidden layer has an associated decoding vector x̃i, which

determines the output vector x′′ if i is the winning unit in the hidden layer,

so that x′′ = x̃i∗ . Usually, en- and decoding vectors are identical, so that x̃i =

x̂i, but if the network adapts at any time between storage and retrieval, the

decoding vectors used during retrieval might be different from the encoding

vectors used during storage.
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Environment BEnvironment A

Figure 2: Encoding of the EC input patterns by the DG. Initially the sys-

tem is in environment A (left panel), the statistics of which is represented by

the ellipse. The set of encoding vectors (solid circles) representing the DG

units are placed according to the same distribution, and input patterns are

mapped to the nearest encoding vector according to a 1/M code. The parti-

tioning of input space therefore takes the form of a Voronoi Tessellation with

the (dotted) lines of partition falling equidistant between any two neigh-

bouring encoding vectors. Upon moving to environment B (right panel) the

input statistics may change (grey ellipse) so that the original encoding is no

longer appropriate. There are several ways of adapting the network to this

change in input statistics, and we are interested in finding the method that

maximises network performance in the new environment while at the same

time preserving its function as a memory store for the old environment.
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2.1 Analysis

2.1.1 Recoding and retrieval error

The purpose of an autoencoder network, such as the one described above,

is to reconstruct the input vector in the output layer as faithfully as possible

under the constraint of a change of representation in the hidden layer. In our

case the representation in the hidden layer is constrained to be a binary one-

out-of-M code. A common measure of the performance of such a network,

or rather the error it makes, is the mean squared Euclidean distance between

input vectors x and output vectors x′′,

E := 〈|x− x
′′|2〉x,{x̂i,x̃i} , (2)

where the averaging denoted by 〈·〉 is over the distribution of the input vec-

tor x, the sets of encoding vectors {x̂i} with i = 1, 2, ...,M , and the sets of

decoding vectors, {x̃i}, if they differ from the encoding vectors. We refer to

this error as the recoding error if the output vector x′′ is calculated directly

from the input vector x by immediate en- and decoding. If there is a stor-

age and retrieval process involved between en- and decoding, we speak of

a retrieval error. It is important to make this distinction as the retrieval error

is not always the same as the recoding error. This typically occurs when the

network changes due to adaptation to a new environment between storage

and retrieval, so that the en- and decoding effectively come from two differ-

ent networks. Note that, in general, this means that there are two distinct

contributions to the error. First, there is the error that arises due to the loss

of information when input patterns are encoded by the network. Second,

there is the error that arises from imperfect decoding due to the meaning of

DG units changing in the time since the pattern was originally stored. The

error due to loss of information when encoding patterns is a property of

the whole network, and is an unavoidable consequence of of the change of

representation between EC and DG layers. The magnitude of this error is a

function of number of units in the DG layer and, on average, is the same for

all networks with equal numbers of DG units. By contrast, the error due to

incorrect decoding is a consequence of the way in which the network adapts

to changes in the input statistics. The magnitude of this error can change

quite dramatically, or even be reduced to zero, depending on the adaptation

strategy used (see below).
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As we wish to focus on the interaction of the EC and DG, we do not

model storage and retrieval explicitly. Instead, we note the index of the win-

ning hidden unit in the storage phase and later use that unit for decoding

in the retrieval phase. In other words, we assume that the storage and re-

trieval mechanism works sufficiently well so that no additional information

is lost during storage and retrieval. The recoding error defined in Equation 2

therefore fully defines the performance metric of the network.

2.1.2 En- and decoding vectors

Input vectors x are drawn from the probability density function pX(x).

Given any such distribution of input vectors, there is an optimal set of en-

and decoding vectors which could be found by some vector quantisation al-

gorithm. However, for analytical reasons we assume that the encoding vec-

tors are distributed in a probabilistic manner according to the distribution

pX̂(x̂), and that the decoding vectors always match the current set of en-

coding vectors. The encoding vectors are therefore statistically independent

from each other. This simplifies the analysis of the network by permitting

an immediate factorisation of the expressions for the recoding and retrieval

errors (See section 2.2). Obviously, pX̂(x̂) should be similar to pX(x) for good

encoding and we typically choose them to be identical. Provided that suffi-

ciently many units in the hidden layer are used, the performance difference

compared to the optimised case is by a constant factor, which does not affect

the pattern of our results or the observations made here (see discussion).

2.1.3 Errors and adaptation strategies

To evaluate the performance of the network we consider a scenario where

a virtual rat moves from one environment A to another environment B and

back again. Whenever we refer to one of these environments, we replace X

by A or B, respectively. For instance, pÂ(â) indicates the distribution of the

encoding vectors, â, for environment A. The distributions defining environ-

ments A and B are assumed to differ by a random rotation with respect to

each other, but are otherwise identical. Note that, if this rotation is small, en-

vironments A andB will be very similar. As we are interested in the average

network performance, the network must be able to deal with very similar as

well as very different environments. The network fully adapted to A is re-
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ferred to as network A. After the network has completely adapted to B it

is referred to as network B. To quantify the performance of the network we

consider the following five errors.

(i) Recoding error for network A in environment A: The recoding error

in environment Awhen the network is fully adapted to A.

(ii) Recoding error for network A in environment B: The recoding error

in environment B when the network has not yet had time to adapt to

B.

(iii) Recoding error for network B in environment B: The recoding error

in environment B when the network has finished adapting to B.

(iv) Retrieval error for network B in environment B: The error for pat-

terns from environment A stored with network A and later retrieved

and decoded using network B. This is the error if the hypothetical rat

retrieves and decodes memories from A after having adapted to B.

(v) Recoding error for network B in environment A: The recoding error

when the rat has returned to environment A but has not yet readapted

to it.

This set of five errors fully quantifies the performance of the network as the

hypothetical rat moves between the two environments.

We evaluate two different adaptation strategies; neuronal turnover and

additive neurogenesis. In neuronal turnover the network is fixed in overall

size but units may be deleted and reinitialised according to the current in-

put statistics, so that some of the DG units are then adapted to the current

environment. The proportion of DG units that turn over is denoted by M2

and ranges from zero in a fixed network to one in a completely reinitialising

network. In neurogenesis the network starts out small in size and is then

allowed to grow over time. In this case the degree of adaptation, M2, is in-

terpreted as the proportion of units that were added in environment B after

the network has finished growing.

We compare the performance of the network under two distinct classes

of adaptation strategy, in the form of neuronal turnover and additive neu-

rogenesis. These two adaptation strategies yield the following four classes

of network that are of particular interest.
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(a) Fixed network: The network has M hidden units. They are initialised

with encoding vectors âi and identical decoding vectors ãi = âi ran-

domly drawn from pÂ(â) and are thereafter kept fixed.

(b) Partial turnover: As for (a) but M2 of the M hidden units are reini-

tialised with new encoding vectors b̂i and identical decoding vectors

b̃i = b̂i randomly drawn from pB̂(b̂) when the rat adapts to environ-

ment B.

(c) Full turnover: As for (b), but with M2 = M . In other words, all of the

hidden units get reinitialised when the rat adapts to environment B.

(d) Neurogenesis: The network starts with a smaller set of (M1) hidden

units, where M1 < M . The en- and decoding vectors of these M1 hid-

den units are fixed. When the rat adapts to environment B, M2 new

units are added to the hidden layer which are initialised with encod-

ing vectors b̂i and identical decoding vectors b̃i = b̂i randomly drawn

from pB̂(b̂). After adaptation the total number of hidden units is the

same as in the other networks, M1 +M2 = M .

Note that after growth is complete in the neurogenesis strategy the network

is, in terms of the recoding error in environment B, indistinguishable from

the partial turnover network. The retrieval error will, however, be lower

because the units added in environment B will not affect the retrieval of

patterns stored in A as they were not available when those patterns were

originally stored. This decrease in retrieval error is at the expense of a loss

of initial representative power in environment A due to a smaller initial net-

work size. It is our goal here to measure the relative sizes of the loss of

representational power in environment A compared to the gain in retrieval

accuracy in environment B and to quantify the overall performance of the

network under the different adaptation strategies outlined above.

Regardless of strategy, the system starts with a network fully adapted to

environmentA, so that all the hidden units are initialisedwith encoding vec-

tors âi and identical decoding vectors ãi = âi randomly drawn from pÂ(â).

The number of hidden units in the initial network may vary depending on

the adaptation strategy. In the neurogenesis strategy the initial number of

units is typically smaller than for the turnover network because, if we add
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Figure 3: The state of a simple network in environmentsA andB for the four

adaptation strategies we consider. For clarity we illustrate a fairly simple

network with a total of four DG units. In neuronal turnover some of the DG

units are fixed but a proportion are allowed to turn over and are reinitialised

according to the current input statistics. This can range from no turnover

(column 1), to partial turnover (column 2), to full turnover (column 3). In

all three cases, the network starts out with a full set of DG units which are

adapted to environment A (solid lines). On entry to environment B the

subset of units undergo turnover and are reinitialised according to the input

statistics of environment B (dotted lines) while the rest remain fixed. In

neurogenesis (column 4) the network starts out with fewer units adapted to

environment A and later adds an extra unit which adapts to environmentB.

new units later, we do not want the network to have the advantage of having

more hidden units than the other networks.

The state of a simple network in environments A and B, for each of the

four adaptation strategies, is shown in Figure 3. The corresponding encod-

ing of the EC input patterns by the DG is illustrated in Figure 4.

2.2 Formal analysis

As the encoding vectors that represent the optimal response locations of

the DG units are drawn independently of each other, an analytical equation

for the recoding error is straightforward to formulate. Evaluating it, how-

ever, requires further simplifications. Consider first the recoding error for

network A, so that all encoding vectors are drawn from distribution A. Let
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Figure 4: Encoding of EC input patterns by the DG for the four basic types

of adaptation strategy we consider. Again, for clarity we illustrate a fairly

simple network with a total of four DG units. With no turnover (column 1)

the partitioning of phase space is fixed and well suited to environment A

and all four units are used. Upon moving to environment B, we find that

the network is not well suited to the new input statistics and can typically

only recruit two of the DG units. This leads to a higher recoding error in

environment B compared to environment A. With partial turnover (column

2) the network again uses all four units in environment A but now, upon

moving to environment B, one randomly selected unit can adapt to the new

input statistic, a change indicated by the arrow. This network can recruit

three units in environment B and the recoding error is therefore lower than

for the fixed network. With full turnover (column 3) all of the units can

adapt and the network can use all four units in both environments. The re-

coding error is therefore approximately the same in environments A and B.

In neurogenesis (column 4) the network starts out with three units adapted

to environmentA. Upon entry to environmentB an additional unit is added

which adapts to the input statistics of environmentB. Thus, the network can

encode patterns from environment B fairly well without having to change

any of the existing units. The key feature of the neurogenesis strategy is that

the network is able to encode both environments reasonably well without

the need to change the meaning of existing DG units, indicated by the ab-

sence of arrows in column 4. This has significant consequences when we

consider, in addition to the recoding error for storage of new patterns, the

retrieval error for patterns that were previously stored in environment A.
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PÂ⊘(x, r) be the probability that an encoding vector â randomly drawn from

distribution A has a distance from x greater than radius r

PÂ⊘(x, r) := P (|x− â| > r) (3)

= 〈H(|x− â| − r)〉
â

(4)

= 1− 〈H(r − |x− â|)〉
â
, (5)

where H(·) is the Heaviside function. An analogous definition follows for

distribution B, and we will make use of this below. If we have MA units

in the hidden layer with encoding vectors âi randomly drawn from pÂ, and

associated decoding vectors ãi = âi, the recoding error for input vectors x

randomly drawn from pX is

E = MA

〈

|x− â1|
2
[

PÂ⊘(x, |x− â1|)
]MA−1

〉

x,â1

. (6)

|x − â1|
2 is the recoding error for particular vectors x and ã1 = â1.

[

PÂ⊘(x, |x− â1|)
]MA−1

is the probability that a given â1 is used for encoding

for a particular input vector x, because the other (MA− 1) encoding vectors,

âi 6=1, are farther away from x than â1. If x and â1 are close to each other this

probability is high. If they are far apart this probability is low, as it is likely

that one of the other encoding vectors is closest to x and will therefore be

used for encoding instead of â1. Since we haveMA encoding vectors, which

are all independent of each other and therefore contribute identically to the

total error, we multiply the result by MA to get the total error. Equation (6)

can be used for recoding errors A and B for network A if we set x to a or b,

respectively. For a fixed network it can be used for all errors, because the

network does not adapt at all. Finally, equation (6) can also be used for the

retrieval error A for network B in the neurogenesis strategy, because in that

case the added hidden units are irrelevant and the old hidden units are still

adapted to A.

An equation analogous to equation (6) holds for environment B.

E = MB

〈

|x− b̂1|
2
[

PB̂⊘(x, |x− b̂1|)
]MB−1

〉

x,b̂1

. (7)

This equation can be used for recoding errors A and B for network B in the

full turnover strategy.
Consider now if the encoding vectors are drawn from two different dis-

tributions, for example if MA encoding vectors are drawn from distribution
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A andMB are drawn from distribution B. In a direct extension of (6) and (7)
we get

E = MA

〈

|x− â1|
2
[

P
Â⊘

(x, |x − â1|)
]MA−1 [

P
B̂⊘

(x, |x − â1|)
]MB

〉

x,â1

+ MB

〈

|x− b̂1|
2

[

P
Â⊘

(x, |x− b̂1|)
]MA

[

P
B̂⊘

(x, |x − b̂1|)
]MB−1

〉

x,b̂1

, (8)

where now the probability of all other encoding vectors âi 6=1 and b̂j be-

ing farther away from input vector x than encoding vector â1 leads to

the product term
(

PÂ⊘(x, |x− â1|)
)MA−1 (

PB̂⊘(x, |x− â1|)
)MB and a similar

term emerges for b̂1. For MB = 0 equation (8) goes over to (6); for MA = 0 it

goes over to (7). We encounter encoding vectors from both distributions in

the hidden layer in the partial turnover strategy and the neurogenesis strat-

egy. Thus, equation (8) can be used in these cases for the recoding errors A

and B for network B.

In the considerations above, we assumed that the decoding vectors are

identical to the encoding vectors and simply set ã1 = â1 and b̃1 = b̂1. How-

ever, when we consider retrieval of stored patterns the en- and decoding

vectors might be different as the network might have changed between stor-

age and retrieval. For instance, when a pattern has been stored with a net-

work completely adapted to A and is then retrieved after the network has

partially adapted to B, some of the decoding vectors, sayMAB of them, will

have changed from ãi = âi to new vectors ãi = b̂i (in reality the encoding

vectors have changed as well from âi to b̂i, but that is not relevant here,

because we consider retrieval and not recoding) and only MAA decoding

vectors are still intact with ãi = âi. In that case equation (6) becomes

E = MAA

〈

|x− â1|
2
[

PÂ⊘(x, |x− â1|)
]MA−1

〉

x,â1

+ MAB

〈

〈

|x− b̂1|
2
〉

b̂1

[

PÂ⊘(x, |x− â1|)
]MA−1

〉

x,â1

. (9)

〈

|x− b̂1|
2
〉

b̂1

is the actual error made for a particular input vector x aver-

aged over all possible decoding vectors b̃1 = b̂1. This equation provides the

retrieval error A for network B for the partial and the full turnover adapta-

tion strategies.

Although equations (6–9) are fairly easy to formulate they are, in prac-

tice, rather difficult to evaluate directly. We therefore take the limiting case

of the N-dimensional input distribution in which only one dimension has
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significant variance and the remainder are set to zero. In other words, we

approximate theN-dimensional distributions with 1D distributions embed-

ded in an N-dimensional space. This preserves our central assumption

about the input distributions, that they are structured in some way with

some dimensions carrying more of the variance than others, while at the

same time allowing us to make further analytical progress.

2.3 Approximation with 1D distributions

To proceed with the analysis we assume that all distributions are inherently

one-dimensional, so that all input-, encoding-, and decoding-vectors drawn

from any single environment lie on a common line. This permits us to con-

fine the analysis to the 2D plane spanned by these two lines, and, without

loss of generality, we assume that the abscissa is the principal axis of envi-

ronment A. The principal axis of B then lies at an angle φ relative to line A.

If a and b indicate local coordinates on lines A and B, respectively, we can

formulate everything with the 1D pdfs, denoted by pA(a), pB(b), pÂ(â) etc.

Within the 2D plane we have the vector relations

a = (a, 0) , (10)

b = (b cosφ, b sinφ) . (11)

The probability that an encoding vector â randomly drawn from distribu-

tion A lies farther away from a or b than radius r is given by

PÂ⊘(a, r) = 1−

a+r
∫

a−r

pA(â) dâ , (12)

PÂ⊘(b, r) = 1−

α+(b,r)
∫

α−(b,r)

pA(â) dâ (13)

with α±(b, r) := b cos φ±ℜ
(

√

r2 − (b sinφ)2
)

, (14)

where ℜ(·) indicates the real part. An analogous definition can be made for

distribution B by interchanging A and B, a and b, â and b̂, etc.

Inserting equations (10–13) into (6–9) and averaging over the scalar vari-

ables a, â, etc. instead of over the vector variables a, â, etc. yields equations

that can be integrated numerically. For instance, in this approximation the
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recoding error B for a network fully adapted to A becomes

E
(6)
= MA

〈

|b− â1|
2
[

PÂ⊘(b, |b− â1|)
]MA−1

〉

b,â1

(15)

(13)
= MA

〈

r2






1−

α+(b,r)
∫

α−(b,r)

pA(â) dâ







MA−1
〉

b,â1

(16)

with (14) and r := |b− â1| (17)
(10,11)
=

√

(b cosφ− â1)2 + (b sinφ)2 . (18)

For the analytical results below we will use equations (6–9) with this 1D-

approximation (10–13). Table 1 presents an overview of the equations used

to calculate the different errors in the different environments.

3 Results

First we examine network performance with a particular, approximately bi-

ological, level of neurogenesis. We present analytical results for the cases

N = 2 and large N under the simplifying assumption that all distributions

are inherently one-dimensional. We then perform simulations using full N-

dimensional distributions for the input and encoding vectors with N = 60.

Having done this we extend our simulations to examine network perfor-

mance across the entire range of turnover and neurogenesis levels.

3.1 Analytical results

First consider the case where the input is two-dimensional and there are

three to four units in the hidden layer, i.e. N = 2, M1 = 3, M2 = 1, and

M = 4 (see Figure 3). All distributions are assumed to be one-dimensional

Gaussian distributions with zero mean and variance one. Distribution A lies

along the abscissa, while distribution B is rotated by an angle φ relative toA.

For symmetry reasons we assume that all angles are equally likely, and we

therefore average over all angles φ with equal probability to yield the total

expected error.

Results for the small N = 2 case are shown in table 2. The five errors

that quantify the performance of the network are described on the left hand

side of the table. The first two errors are recoding errors for the network
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adapted to environment A, and quantify network performance in environ-

ments A and B. The remaining three errors refer to when the network has

subsequently adapted to environment B, and quantify the recoding error in

B, the retrieval error for patterns that were stored by network A but are de-

coded by network B, and the recoding error in A (representing the situation

where the rat has once again reentered A and not had time to readapt).

Column one shows these five errors for a fixed network. As expected,

we see that network A performs well in environment A, as it has a full set of

DG units that are adapted to the input statistics of that environment. Also

as expected network A performs initially poorly in environment B as the

network has not yet had time to adapt. This poor performance does not

improve after the network adapts and becomes network B as, with fixed

unit numbers and connections, the network is unable change in any way.

Thus, the third and fifth errors (recoding errors in environments B and A

with network B) are identical to the corresponding recoding errors for net-

work A. Finally, the retrieval error for patterns stored under network A is

the same as the original recoding error as, in a fixed network, the meaning

of the encoding and decoding vectors does not change.

Column two shows the same set of five errors for the partial turnover

strategy. Here, one unit of the four total units is deleted from the network

and reinitialised according to the current input statistics, and the remaining

three are fixed. The first two errors are the same as for a fixed network, as

we still have a network with a full set of DG units all adapted to A. How-

ever, on entry to environmentB the network can now adapt by changing the

meaning of one of the DG units, reducing the recoding error for network B

in environment B (third row). This increase in performance comes at the

expense of a corresponding increase in the recoding error for new patterns

from environmentA as the network is now partially adapted to the statistics

ofA and partially adapted to the statistics ofB (fifth row). Crucially, we also

see a large increase in the retrieval error for patterns stored under network

A as the meaning of the encoding and decoding vectors associated with the

reinitialised unit have changed in the time since the patterns were stored.

Decoding of memories which used this unit during storage is therefore dis-

rupted.

Column three shows the five errors for the full turnover strategy. Here,

all four DG units turn over and reinitialised according to the current input
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statistics. Again, the first two errors are the same as for a fixed network,

as the network has a full set of DG units adapted to A. On entry to en-

vironment B the entire DG layer adapts to the new input statistics. This

produces a recoding error for network B in environment B (third row) that

is identical to network A in environment A (first row). As expected, in the

process the network loses the ability to successfully recode new patterns

from environment A (in fact, the recoding errors for environments A and B

are simply interchanged; fifth row). We also see that the retrieval properties

of the network have now been completely disrupted as the meaning of all

the encoding and decoding vectors have changed since the patterns were

stored. This is an extreme example of the problem of interference, and the

network is unable to decode retrieved patterns in a meaningful way.

Column four shows the five errors for the neurogenesis strategy. In this

case, we start with an initially smaller network with three DG units and

later add a fourth unit that is adapted to environment B. The first two er-

rors follow a similar pattern to the fixed network, in that the network re-

codes patterns from A better than patterns from B. However, the absolute

value of the error is, in both cases, higher as we have a network with fewer

DG units and therefore a slightly lower representational power. On entry

to environment B the network grows a new DG unit that is adapted to the

statistics of environment B. This produces a hybrid network that partially

adapted to the statistics of A and partially adapted to the statistics of B. In

fact, in terms of recoding errors for environments A and B this network is

indistinguishable to the partial turnover network discussed above. Thus,

the recoding errors for network B in environment A and B are identical to

the partial turnover network (third and fifth rows). In contrast to the par-

tial turnover network, however, we see that the retrieval properties of the

network have not been disrupted as the new unit added for environment

B was not used in the original encoding of these patterns. The error is still

non-zero due to the unavoidable loss of information from the change in rep-

resentation between the EC and DG layers. In fact, the error in the original

environment A is slightly higher in the neurogenesis network compared to

the full turnover network due to the lower representational power of the

initially smaller DG. Crucially, however, the increase in recoding error in A

is much smaller than the corresponding gain from eliminating the retrieval

error in B. Thus, by growing the network instead of introducing neuronal
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turnover in a network of fixed size we arrive at a network that produces a

reasonable level of performance in both environment A and B.

Now consider the high-dimensional case with large N . For consistency

with earlier work (Wiskott et al., 2006) we choose N = 60, but any number

of the same order of magnitude would suffice. Since the distributions are

still inherently one-dimensional the two distributions A and B span a two-

dimensional subspace within the N-dimensional input space. Thus, we can

treat the N = 60 case in the same manner as the N = 2 case but with a

greater number of units in the hidden layer. We use M1 = 225, M2 = 75,

and M = 300, so that the ratio between input and hidden units is the same

as the five-to-one ratio seen in biology and that the increase in number of

units is one quarter as in the two-dimensional case. In a high-dimensional

space two randomly rotated vectors are almost certainly orthogonal. Thus,

for large N the angle φ is not evenly distributed but typically lies very close

to π/2. For the high-dimensional case we therefore simply set φ = π/2 and

do not need to average over some distribution of angles.

Results for the large N = 60 case are also shown in table 2. We see the

same pattern of errors as for the small N case. In every case, adaptation

strategies derived from a network of fixed size with some level of neuronal

turnover suffer from at least one large error, representing a breakdown of

network function in the corresponding task. For the fixed network, this task

is dealing with new patterns from environment B, while for the partial or

full turnover networks this task is correctly decoding retrieved patterns that

were originally stored in A. Additive neurogenesis, on the other hand, suf-

fers from no such problems and can deal with the full range of retrieval and

recoding tasks. Indeed, the pattern of errors is even clearer in this large N

case, as we have a much greater representational power in the DG so a well

adapted network produces an error very close to zero (indicated by entries

of < 0.01 in the table).

Thus, for both the small and large N cases we see a similar pattern of

results. A fixed network successfully recodes and retrieves patterns from

environment A but cannot deal with environment B. A partial turnover

network deals more successfully with environment B but, as a direct re-

sult of the turnover, suffers significant errors when retrieving previously

stored patterns from A. A full turnover network creates an extreme version

of this problem and destroys the retrieval properties of the network entirely.
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In contrast, the neurogenesis strategy offers good all-round performance as

the network can accommodate the change in input statistics when moving

from A to B without disrupting the retrieval properties of previously laid

down memories.

3.2 Simulation results

In order to show that our assumption that all distributions are inherently

one-dimensional does not qualitatively affect our results we have performed

a numerical simulation using full, N-dimensional Gaussian distributions.

We use N = 60, M1 = 225, M2 = 75, and M = 300 as used in the larger net-

work considered above. Standard deviations, which we denote by σi with

i = 1, 2, ..., N , describing the 60-dimensional input distribution are assigned

according to the approximately exponential distribution shown in Figure 5.

Dimensions with larger standard deviation are more important than dimen-

sions with smaller standard deviation as they carry more of the variance of

the input. This introduces an element of structure into the input in a simple,

biologically plausible manner. In order to make ameaningful comparison to

the analytical results we constrain the total variance to be unity,
∑N

i=1 σ
2
i = 1.

We draw 1,000 input vectors from the distribution defined above and

encode them using either 225 or 300 encoding vectors, depending on the en-

vironment and the strategy. We repeat this 100,000 times to average over

different sets of input vectors, encoding vectors, and over different angles

between environments A andB. The results are set out in Table 3. Although

the errors are generally larger than for the 1-dimensional analytical case pre-

sented in Table 2, a result of the much greater occupation of phase space

by the input distributions, we see a similar pattern of results as for both

the N = 2 and large N analytical cases (Table 2). Again, each of the three

turnover strategies suffers from at least one large error while neurogenesis

offers a good all-round performance in both of the environments.

3.2.1 Effect of changing the number of adapting units

The degree of adaptation in the network can be described by an adaptation

parameter, p, which we define to be the proportion of units in the dentate

gyrus layer that can adapt in some way. With neuronal turnover p is simply

the proportion of units that turnover. With neurogenesis p is the proportion
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Figure 5: Distribution of standard deviations describing the 60-dimensional

Gaussian input distribution used in the full simulations described in the

Results section. The first 15 dimensions are interpreted as carrying useful

or interesting information, while the remaining 45 dimensions are inter-

preted as noise. Standard deviations are assigned according to σi = (α/i)

for i = 1, 2, ..., 15 and σi = 0.1 for i = 16, 17, ..., 60, then normalised such that
∑

i σ
2
i = 1. We use α = 1.6. The distribution is largely insensitive to this

parameter choice, and varying α does not qualitatively affect our results.

of units that, after the network has finished growing, were added in environ-

ment B. Up to now we have used an adaptation parameter of p = 0.25, so

that one quarter of the units in the network either grew or were able to adapt

to changes in input statistics. We chose this value as it approximates the de-

gree of neurogenesis observed over the lifetime of a real animal (Bayer et al.,

1982; Boss et al., 1985). The performance of the network using the neurogen-

esis strategy at p = 0.25 is significantly better compared to partial turnover.

However, it is important to understand the effect of changing p, and, in par-

ticular, to show whether regions exist where neuronal turnover is actually

better than neurogenesis or whether neurogenesis is always superior. We

therefore examine network performance for the full range of p between zero

and one. We use the same 60-dimensional Gaussian distribution defined

above, and perform simulations, as before, by drawing 1,000 input vectors

and encoding them using a network of 300 units with the adaptation param-

eter, p, ranging from 0 to 1. We repeat this 100,000 times to average over all

input vectors, encoding vectors, and angles between environments A and

B.

Figure 6 is a plot of the recoding and retrieval errors for the neuronal
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Figure 6: Effect of changing the adaptation parameter, p, on the recoding

and retrieval errors for a network using neuronal turnover. We plot the

recoding error in environment A (dashed line), the recoding error in envi-

ronment B (dotted line), and the retrieval error for patterns previously laid

down in environment A (solid line), for a network adapted to environment

B. p = 0 corresponds to a fixed network, and p = 1 to the full turnover net-

work. As p increases the recoding error in environment B falls, and there is

a corresponding increase in the recoding error in environment A. However,

as we increase p the retrieval error increases linearly as retrieved patterns

are incorrectly decoded by the network. This increase is unavoidable and

stems from the remapping of DG units that were previously used to encode

memory patterns in environment A.
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turnover strategy when the network is adapted to environment B. Three

curves are shown; the recoding error in environment A, the recoding error

in environment B, and the retrieval error of patterns laid down previously

in environment A. These three errors form the lower set of entries in Table 3.

p = 0 corresponds to a completely fixed network, p = 1 to the full turnover

network, and values in between to partial turnover networks. For a fixed

network the recoding and retrieval errors for environment A are identical.

The exact value of this error is determined by the number of dentate gyrus

units we provide the network with and we can, at least in principal, make

this error arbitrarily small. For a fixed network the recoding error in envi-

ronmentB is higher than for environmentA as the network can, on average,

reuse only a small number of units that are adapted for A. As p increases

there is a reduction in the recoding error in environment B derived from the

increasing number of units which have turned over and are adapted to the

new input statistics, and a corresponding increase in the recoding error for

new patterns from environment A as not all of the units in the DG are now

adapted to A. At the same time, the retrieval error for patterns previously

laid down in A increases. This occurs because the meaning of some of the

units in the DG has changed in the time since the patterns were originally

stored, and, as a result, these patterns are incorrectly decoded by the net-

work. Note that the increase is linear because any randomly chosen dentate

gyrus unit is, in the averaged sense, of equal importance to the network as

any other unit. The maximum retrieval error is reached for a fully adapt-

ing network at p = 1. In such a network, all of the dentate gyrus units

have adapted to accommodate environment B. In other words, we first ran-

domly initialise the dentate gyrus units using the statistics of environment

A then randomly reinitialise them using the statistics for environment B. As

the retrieval error is a comparison, in the mean square sense, of the initial

encoding vector (adapted to A) and the new decoding vector (adapted for

B), we therefore have a comparison of randomly drawn vectors from two

distributions, A and B, which is simply the sum of the total variance of the

two underlying distributions. We defined each distribution to have a total

variance of one, thus, at p = 1, the retrieval error reaches a maximum value

of two.

¡Figure 7 shows the corresponding curves for the neurogenesis strategy.

p = 0 corresponds to a network in which all of the units are present from
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Figure 7: Effect of changing the adaptation parameter, p, on the recoding

and retrieval errors for a network using a neurogenesis strategy. We plot the

recoding error in environment A (dashed line), the recoding error in envi-

ronment B (dotted line), and the retrieval error for patterns previously laid

down in environment A (solid line), for a network adapted to environment

B. As for the conventional adaptation strategy, as p increases the recoding

error in environment B falls and there is a corresponding increase in the re-

coding error in environment A. This time, there is only a very gradual rise

in the retrieval error as neurogenesis does not interfere with the decoding of

previously stored and retrieved patterns.
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the start and the network is not allowed to grow, in effect such a network is

identical to the fixed network discussed above. As p → 1we have a network

in which very few of the units are present from the start and almost all are al-

lowed to grow on entry to environment B. At p = 0 the turnover and neuro-

genesis strategies are equivalent, and the errors are the same. As p increases

from zero we see the same reduction in the recoding error in environmentB,

and increase in the recoding error for new patterns from environment A, as

we saw for the neuronal turnover adaptation strategy. Again, this is derived

from the increasing number of units which have adapted to the new input

statistics. However, in contrast to the neuronal turnover adaptation strat-

egy, the retrieval error for patterns previously laid down in environment A

increases only very slowly. This gradual increase is due to the reduction in

the number of units used to initially encode patterns from environment A.

There is no disruption of decoding as the new units which have been added

to the DG do not interfere with the interpretation of previously laid down

patterns.

Comparing the curves shown in Figures 6 and 7, we see that, once the

network has adapted to environment B, for every value of p the neurogene-

sis strategy performs better than the neuronal turnover adaptation strategy.

This observation is also true if we examine the mean of the recoding and

retrieval errors, which may be viewed as one method of conveniently as-

sessing overall network performance, as a function of p. Interestingly, we

find that this averaged error is minimised for a p-value around 0.3, which

is very similar to experimental observations of the amount of neurogenesis

that occurs over the lifetime of an animal.

4 Discussion

The occurrence of adult neurogenesis in a variety of species is now a well

accepted experimental result, but a theoretical analysis of the computational

implications has only recently started to receive attention. Existing studies

have explored neurogenesis in a variety of networks, using a variety of dif-

ferent learning rules (Gould et al., 1999; Cecchi et al., 2001; Chambers et al.,

2004; Becker, 2005; Crick and Miranker, 2005; Aimone et al., 2006; Chambers

and Conroy, 2007). These studies have been useful in illustrating some of the

computational properties of neurogenesis, in particular when neurogenesis
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acts as a general or targeted turnover of neurons and new units are gen-

erated as replacements for dying units in the network. Although neuronal

turnover is the dominant process in the olfactory bulb, where it appears to

act as a replacementmechanism for worn-out receptor cells (Ming and Song,

2005), hippocampal neurogenesis is apparently an additive process, so that

new neurons are added to an existing population which grows over time

(Bayer et al., 1982; Boss et al., 1985).

Here, we have sought to determine the functional consequences of ad-

ditive neurogenesis in a simplified memory model of the hippocampus. In

earlier work, it was shown that additive neurogenesis can play a useful role

in avoiding a form of interference in a simple, linear feedforward neural net-

work (Wiskott et al., 2006). This form of interference occurs when a network

that stores and retrieves memory patterns is required to adapt its encoding

and decoding to deal with a changing input environment, and is a graded

effect distinct from other forms of interference such as that occurring in a

Hopfield net when too many patterns are stored and network performance

breaks down (Hopfield, 1982). In Wiskott, Rasch and Kempermann (2006)

it was hypothesised that additive neurogenesis might also be used to avoid

this form of interference in biology, specifically in the dentate gyrus of the

hippocampus. Here we have explicitly evaluated this hypothesis by exam-

ining additive neurogenesis in a simplified hippocampal memory model.

This model incorporates both a divergence in dimensionality from the EC

to the DG and sparse coding within the DG, leading to a highly non-linear

computation that is very different in nature to that of the previous, linear

model. The network received input that is structured in a simple way that

depends on the current environment, and we examined the performance of

the network when this environment changes.

We have shown that fixing the encoding for the initial environment

produces poor performance in the new environment. Allowing neuronal

turnover in the network, so that some of the units may be deleted and reini-

tialised according to the statistics of the current environment, remedies this

but introduces significant errors when retrieving previously stored patterns

from the initial environment due to a mismatch of encoding and decoding

vectors in the network. Allowing the whole network to turn over creates an

extreme version of this problem and destroys the retrieval properties of the

network entirely. Thus, in our model, adaptation strategies derived from
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neuronal turnover are inadequate when encoding and decoding takes place

as part of a memory function. In contrast, an adaptation strategy based on

additive neurogenesis, where the network starts with a smaller population

of neurons adapted to the initial environment and then adds a small number

of additional units adapted to the new environment eliminates entirely the

problem of interference, and produces a good level of performance in both

environments while at the same time preserving the retrieval properties of

the network.

In this paper we have focused on the interaction of the EC and DG lay-

ers and the implications that the transformation of representation between

these two layers has for network function. We have left implicit the parts of

the network responsible for the actual storage and recall of input patterns.

It has been suggested that CA3 could be the site of storage and recall in the

hippocampus, with the highly recurrent CA3 pyramidal cells perhaps form-

ing a Hopfield network. A Hopfield network possesses a number of useful

properties that make it appropriate for memory storage, for example pat-

tern completion, where a complete stored activity pattern is recalled from a

partial cue. Our model is fully consistent with this view, and it would be

relatively straightforward to include an explicit CA3 layer that operates as a

Hopfield network. However, we have assumed only that some kind of stor-

age and recall mechanism exists and that it works sufficiently well so that

the additional sources of error such as partial or complete failure of retrieval

are eliminated. This allows us to focus entirely on the role of the DG, as the

recoding error defined in Equation 2 is due solely to the success or failure of

the DG to deal with the encoding and decoding problem that the network

faces with changing environments.

In our model, new units are added to the DG over time, but we should

point out that a net growth in the size of the DG does not also imply that

there is no cell death. It is certainly true that cell death can occur in the

hippocampus in addition to new cell growth. However, in the model we

present here, provided that cell death occurs on a time scale longer than that

involved in consolidation of memories to locations outside of the hippocam-

pus, cell death does not play a role in the encoding and decoding function

of the network, and would therefore not affect our results in any way. Thus,

we do not claim that there is no cell death in the DG only that it does not

play any role in our model provided it takes place over a sufficiently long

30



time scale.

An important assumption in our model is that the EC input is structured

in some way, and that this structure is different in environments A and B.

For simplicity, we modelled the input patterns as multi-dimensional Gaus-

sian distributions and we introduced structure into this input in a simple

and biologically plausible way by choosing standard deviations for A and

B according to an approximately exponential distribution. Other methods

of structuring the input exist but, in practice, there is little experimental data

with which to constrain them. If the distributions possess no structure, so

that environments A and B are identical, then there exists a single, univer-

sally optimised encoding which eliminates the problem of interference and

the need for neurogenesis. We speculate, however, that, provided there is

some kind of structure in the input that differs between A and B, the prob-

lem of interference likely exists independently of the exact choice of input

statistics. Indeed, with the Gaussian distributions we have used there is al-

ways considerable overlap between environments A and B in the region of

common high density around the origin. With a different distribution this

region of overlap could be reduced or vanish entirely. The recoding error

for environment B when the system is adapted for environment A would

therefore be much higher, and the need for neurogenesis presumably even

stronger.

We assumed that the encoding of the EC patterns by the DG was opti-

mised only in the sense that, having placed the encoding vectors, the encod-

ing error was minimised by mapping the input vectors to the nearest encod-

ing vector. We did not consider true optimisation, which fixes the location

of the encoding and decoding vectors as a function of the input statistics,

nor did we consider how plasticity of new DG units could optimise their lo-

cation to maximise their usefulness in reducing the output error. Our prob-

abilistic approach has the advantage of being analytically tractable, while

at the same time still matching regions of high input and encoding vector

density. With optimal encoding we would also expect to see regions of high

input density populated by a high density of encoding vectors, although

the exact placement of the encoding and decoding vectors would be differ-

ent and the resulting recoding and retrieval errors lower. However, as this

would reduce all of the errors we have calculated we expect that the overall

pattern of our results would remain unchanged. Thus, optimisation of the
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encoding and decoding would not alter our central result, that additive neu-

rogenesis performs better than neuronal turnover when a network performs

an en- and decoding as part of a memory task. In a similar way, we would

expect plasticity in the DG to have minimal effect on our model. Indeed, we

have performed additional simulations incorporating a gradient of plastic-

ity into new DG units using a neural gas algorithm, so that new DG units

have a period of time in which they are highly plastic and can better adapt

to the current input statistics, and found that this has very little influence on

our results, typically reducing the errors of Table 3 by less than one percent.

We may conclude that plasticity (and therefore the optimisation) of new DG

cells actually plays a very small role in our model and that it is the neuroge-

nesis (be it additive or otherwise) that is the driving force behind network

adaptation.

We have assumed that a 1/M code operates in the DG. This produces

an appropriate level of sparseness for the network sizes we consider. As

we increase the network size we expect more units to be active, until we

reach biological levels of around 5, 000 active DG units out of a population

of 1, 000, 000. We are thus motivated to consider more general K/M codes,

where K = 1, 2, ...,M . A K/M code may be interpreted in various ways.

Overall network activity could be fixed, so that we have a K-winner-take-

all mechanism or, alternatively, any number of units from 1 to K may be

active at any one time. In either case, the M DG units will partition the

input phase space into regions corresponding to different combinations of

activity. The details of this partitioning will depend heavily on the activa-

tion rule used, and it is difficult to predict how such a change will affect

network performance. However, we know that the input phase space will

still be divided into a number of states, each of which corresponds to some

combination of active DG units. Although the partitioning may be compli-

cated, we may still represent these states using a 1/M code with M equal

to the number of states. Thus, any K/M code therefore has an analog with

the simple 1/M code presented here. As the problem of interference exists

because there is an encoding from the EC to the DG that changes with time,

it is likely that it is independent of the exact nature of the encoding and we

therefore expect that qualitatively similar results would be produced with a

K/M code. Indeed, in an earlier study a linear neural network with a very

different encoding, in the form of a compact code, was used and similar re-
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sults were found (Wiskott et al., 2006). Thus, if wewere to repeat our present

study with a larger network using a K/M DG code we would expect to see

the same trends as presented here for the 1/M network, and our conclusions

would continue to apply.

In conclusion, we have considered additive neurogenesis in a simplified

hippocampal memory model that is required to encode and decode patterns

in a changing input environment. This hippocampal model differs from the

simple, linear, feed-forward network we considered in earlier work as it

incorporates both a divergence in dimensionality from the EC to the DG

and sparse coding within the DG, both of which alter quite dramatically the

nature of the computation in the network. Provided the network receives

input that is structured in some way that depends on the current environ-

ment, we have shown that a a form of interference exists in the model. We

find that adaptation strategies derived from fixed size networks with neu-

ronal turnover are inadequate and produce large errors in either recoding

or retrieval tasks. In contrast to neuronal turnover, an adaptation strategy

based on additive neurogenesis, where the network starts with a smaller

population of neurons adapted to the initial environment and then adds

a small number of additional units adapted to the new environment, pro-

duces a good level of performance in both environments while at the same

time preserving the retrieval properties of the network. This observation

holds across the full range of adaptation levels available to the network but,

interestingly, we see close to optimal performance at biologically realistic

levels of neurogenesis.
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Type of error Adaptation strategy

Network A Fixed Partial TO Full TO NG

Recoding A

(6) with

MA = M

X = A

(6) with

MA = M

X = A

(6) with

MA = M

X = A

(6) with

MA = M1

X = A

Recoding B

(6) with

MA = M

X = B

(6) with

MA = M

X = B

(6) with

MA = M

X = B

(6) with

MA = M1

X = B

Network B Fixed Partial TO Full TO NG

Recoding B

(6) with

MA = M

X = B

(8) with

MA = M1

MB = M2

X = B

(7) with

MB = M

X = B

(8) with

MA = M1

MB = M2

X = B

Retrieval A

(6) with

MA = M

X = A

(9) with

MAA = M1

MAB = M2

X = A

(9) with

MAA = 0

MAB = M

X = A

(6) with

MA = M1

X = A

Recoding A

(6) with

MA = M

X = A

(8) with

MA = M1

MB = M2

X = A

(7) with

MB = M

X = A

(8) with

MA = M1

MB = M2

X = A

Table 1: Equations and parameters used to calculate the errors. See sec-

tion 2.1.3 for a definition of the different types of errors and adaptation

strategies considered and section 2.2 for the full equations referenced here

by numbers.
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Type of error Adaptation strategy

Network A Fixed Partial TO Full TO NG

Recoding A 0.39/<0.01 0.39/<0.01 0.39/<0.01 0.55/<0.01

Recoding B 0.74/ 1.00 0.74/ 1.00 0.74/ 1.00 0.85/ 1.00

Network B Fixed Partial Full NG

Recoding B 0.74/ 1.00 0.51/<0.01 0.39/<0.01 0.51/<0.01

Retrieval A 0.39/<0.01 0.79/ 0.51 2.00/ 2.00 0.55/<0.01

Recoding A 0.39/<0.01 0.47/<0.01 0.74/ 1.00 0.47/<0.01

Table 2: Analytical results for the recoding and retrieval errors for N =

2/N = 60. Errors indicated by <0.01 were very close to zero.

Type of error Adaptation strategy

Network A Fixed Partial TO Full TO NG

Recoding A 0.36 0.36 0.36 0.38

Recoding B 0.99 0.99 0.99 1.00

Network B Fixed Partial Full NG

Recoding B 0.99 0.44 0.36 0.44

Retrieval A 0.36 0.77 2.00 0.38

Recoding A 0.36 0.38 0.99 0.38

Table 3: Simulation results for the recoding and retrieval errors in environ-

ments A and B, under various different adaptation strategies for N = 60.

The rows and columns are the same as for Table 2. Simulation parameters

are given in the main body of text and standard deviations describing the

input distribution are shown in Figure 5. We set M1 = 225 and M2 = 75, so

that M = 300.
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